| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
pNFS: Fix uninited ptr deref in block/scsi layout
The error occurs on the third attempt to encode extents. When function
ext_tree_prepare_commit() reallocates a larger buffer to retry encoding
extents, the "layoutupdate_pages" page array is initialized only after the
retry loop. But ext_tree_free_commitdata() is called on every iteration
and tries to put pages in the array, thus dereferencing uninitialized
pointers.
An additional problem is that there is no limit on the maximum possible
buffer_size. When there are too many extents, the client may create a
layoutcommit that is larger than the maximum possible RPC size accepted
by the server.
During testing, we observed two typical scenarios. First, one memory page
for extents is enough when we work with small files, append data to the
end of the file, or preallocate extents before writing. But when we fill
a new large file without preallocating, the number of extents can be huge,
and counting the number of written extents in ext_tree_encode_commit()
does not help much. Since this number increases even more between
unlocking and locking of ext_tree, the reallocated buffer may not be
large enough again and again. |
| In the Linux kernel, the following vulnerability has been resolved:
sctp: linearize cloned gso packets in sctp_rcv
A cloned head skb still shares these frag skbs in fraglist with the
original head skb. It's not safe to access these frag skbs.
syzbot reported two use-of-uninitialized-memory bugs caused by this:
BUG: KMSAN: uninit-value in sctp_inq_pop+0x15b7/0x1920 net/sctp/inqueue.c:211
sctp_inq_pop+0x15b7/0x1920 net/sctp/inqueue.c:211
sctp_assoc_bh_rcv+0x1a7/0xc50 net/sctp/associola.c:998
sctp_inq_push+0x2ef/0x380 net/sctp/inqueue.c:88
sctp_backlog_rcv+0x397/0xdb0 net/sctp/input.c:331
sk_backlog_rcv+0x13b/0x420 include/net/sock.h:1122
__release_sock+0x1da/0x330 net/core/sock.c:3106
release_sock+0x6b/0x250 net/core/sock.c:3660
sctp_wait_for_connect+0x487/0x820 net/sctp/socket.c:9360
sctp_sendmsg_to_asoc+0x1ec1/0x1f00 net/sctp/socket.c:1885
sctp_sendmsg+0x32b9/0x4a80 net/sctp/socket.c:2031
inet_sendmsg+0x25a/0x280 net/ipv4/af_inet.c:851
sock_sendmsg_nosec net/socket.c:718 [inline]
and
BUG: KMSAN: uninit-value in sctp_assoc_bh_rcv+0x34e/0xbc0 net/sctp/associola.c:987
sctp_assoc_bh_rcv+0x34e/0xbc0 net/sctp/associola.c:987
sctp_inq_push+0x2a3/0x350 net/sctp/inqueue.c:88
sctp_backlog_rcv+0x3c7/0xda0 net/sctp/input.c:331
sk_backlog_rcv+0x142/0x420 include/net/sock.h:1148
__release_sock+0x1d3/0x330 net/core/sock.c:3213
release_sock+0x6b/0x270 net/core/sock.c:3767
sctp_wait_for_connect+0x458/0x820 net/sctp/socket.c:9367
sctp_sendmsg_to_asoc+0x223a/0x2260 net/sctp/socket.c:1886
sctp_sendmsg+0x3910/0x49f0 net/sctp/socket.c:2032
inet_sendmsg+0x269/0x2a0 net/ipv4/af_inet.c:851
sock_sendmsg_nosec net/socket.c:712 [inline]
This patch fixes it by linearizing cloned gso packets in sctp_rcv(). |
| In the Linux kernel, the following vulnerability has been resolved:
pptp: ensure minimal skb length in pptp_xmit()
Commit aabc6596ffb3 ("net: ppp: Add bound checking for skb data
on ppp_sync_txmung") fixed ppp_sync_txmunge()
We need a similar fix in pptp_xmit(), otherwise we might
read uninit data as reported by syzbot.
BUG: KMSAN: uninit-value in pptp_xmit+0xc34/0x2720 drivers/net/ppp/pptp.c:193
pptp_xmit+0xc34/0x2720 drivers/net/ppp/pptp.c:193
ppp_channel_bridge_input drivers/net/ppp/ppp_generic.c:2290 [inline]
ppp_input+0x1d6/0xe60 drivers/net/ppp/ppp_generic.c:2314
pppoe_rcv_core+0x1e8/0x760 drivers/net/ppp/pppoe.c:379
sk_backlog_rcv+0x142/0x420 include/net/sock.h:1148
__release_sock+0x1d3/0x330 net/core/sock.c:3213
release_sock+0x6b/0x270 net/core/sock.c:3767
pppoe_sendmsg+0x15d/0xcb0 drivers/net/ppp/pppoe.c:904
sock_sendmsg_nosec net/socket.c:712 [inline]
__sock_sendmsg+0x330/0x3d0 net/socket.c:727
____sys_sendmsg+0x893/0xd80 net/socket.c:2566
___sys_sendmsg+0x271/0x3b0 net/socket.c:2620
__sys_sendmmsg+0x2d9/0x7c0 net/socket.c:2709 |
| In the Linux kernel, the following vulnerability has been resolved:
f2fs: fix KMSAN uninit-value in extent_info usage
KMSAN reported a use of uninitialized value in `__is_extent_mergeable()`
and `__is_back_mergeable()` via the read extent tree path.
The root cause is that `get_read_extent_info()` only initializes three
fields (`fofs`, `blk`, `len`) of `struct extent_info`, leaving the
remaining fields uninitialized. This leads to undefined behavior
when those fields are accessed later, especially during
extent merging.
Fix it by zero-initializing the `extent_info` struct before population. |
| In the Linux kernel, the following vulnerability has been resolved:
comedi: Fix use of uninitialized memory in do_insn_ioctl() and do_insnlist_ioctl()
syzbot reports a KMSAN kernel-infoleak in `do_insn_ioctl()`. A kernel
buffer is allocated to hold `insn->n` samples (each of which is an
`unsigned int`). For some instruction types, `insn->n` samples are
copied back to user-space, unless an error code is being returned. The
problem is that not all the instruction handlers that need to return
data to userspace fill in the whole `insn->n` samples, so that there is
an information leak. There is a similar syzbot report for
`do_insnlist_ioctl()`, although it does not have a reproducer for it at
the time of writing.
One culprit is `insn_rw_emulate_bits()` which is used as the handler for
`INSN_READ` or `INSN_WRITE` instructions for subdevices that do not have
a specific handler for that instruction, but do have an `INSN_BITS`
handler. For `INSN_READ` it only fills in at most 1 sample, so if
`insn->n` is greater than 1, the remaining `insn->n - 1` samples copied
to userspace will be uninitialized kernel data.
Another culprit is `vm80xx_ai_insn_read()` in the "vm80xx" driver. It
never returns an error, even if it fails to fill the buffer.
Fix it in `do_insn_ioctl()` and `do_insnlist_ioctl()` by making sure
that uninitialized parts of the allocated buffer are zeroed before
handling each instruction.
Thanks to Arnaud Lecomte for their fix to `do_insn_ioctl()`. That fix
replaced the call to `kmalloc_array()` with `kcalloc()`, but it is not
always necessary to clear the whole buffer. |
| Use of uninitialized resource in Windows Remote Access Connection Manager allows an authorized attacker to elevate privileges locally. |
| In the Linux kernel, the following vulnerability has been resolved:
bpf, ktls: Fix data corruption when using bpf_msg_pop_data() in ktls
When sending plaintext data, we initially calculated the corresponding
ciphertext length. However, if we later reduced the plaintext data length
via socket policy, we failed to recalculate the ciphertext length.
This results in transmitting buffers containing uninitialized data during
ciphertext transmission.
This causes uninitialized bytes to be appended after a complete
"Application Data" packet, leading to errors on the receiving end when
parsing TLS record. |
| In the Linux kernel, the following vulnerability has been resolved:
comedi: Fix use of uninitialized data in insn_rw_emulate_bits()
For Comedi `INSN_READ` and `INSN_WRITE` instructions on "digital"
subdevices (subdevice types `COMEDI_SUBD_DI`, `COMEDI_SUBD_DO`, and
`COMEDI_SUBD_DIO`), it is common for the subdevice driver not to have
`insn_read` and `insn_write` handler functions, but to have an
`insn_bits` handler function for handling Comedi `INSN_BITS`
instructions. In that case, the subdevice's `insn_read` and/or
`insn_write` function handler pointers are set to point to the
`insn_rw_emulate_bits()` function by `__comedi_device_postconfig()`.
For `INSN_WRITE`, `insn_rw_emulate_bits()` currently assumes that the
supplied `data[0]` value is a valid copy from user memory. It will at
least exist because `do_insnlist_ioctl()` and `do_insn_ioctl()` in
"comedi_fops.c" ensure at lease `MIN_SAMPLES` (16) elements are
allocated. However, if `insn->n` is 0 (which is allowable for
`INSN_READ` and `INSN_WRITE` instructions, then `data[0]` may contain
uninitialized data, and certainly contains invalid data, possibly from a
different instruction in the array of instructions handled by
`do_insnlist_ioctl()`. This will result in an incorrect value being
written to the digital output channel (or to the digital input/output
channel if configured as an output), and may be reflected in the
internal saved state of the channel.
Fix it by returning 0 early if `insn->n` is 0, before reaching the code
that accesses `data[0]`. Previously, the function always returned 1 on
success, but it is supposed to be the number of data samples actually
read or written up to `insn->n`, which is 0 in this case. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: mac80211: reject TDLS operations when station is not associated
syzbot triggered a WARN in ieee80211_tdls_oper() by sending
NL80211_TDLS_ENABLE_LINK immediately after NL80211_CMD_CONNECT,
before association completed and without prior TDLS setup.
This left internal state like sdata->u.mgd.tdls_peer uninitialized,
leading to a WARN_ON() in code paths that assumed it was valid.
Reject the operation early if not in station mode or not associated. |
| In the Linux kernel, the following vulnerability has been resolved:
hfs: fix to initialize fields of hfs_inode_info after hfs_alloc_inode()
Syzbot reports uninitialized value access issue as below:
loop0: detected capacity change from 0 to 64
=====================================================
BUG: KMSAN: uninit-value in hfs_revalidate_dentry+0x307/0x3f0 fs/hfs/sysdep.c:30
hfs_revalidate_dentry+0x307/0x3f0 fs/hfs/sysdep.c:30
d_revalidate fs/namei.c:862 [inline]
lookup_fast+0x89e/0x8e0 fs/namei.c:1649
walk_component fs/namei.c:2001 [inline]
link_path_walk+0x817/0x1480 fs/namei.c:2332
path_lookupat+0xd9/0x6f0 fs/namei.c:2485
filename_lookup+0x22e/0x740 fs/namei.c:2515
user_path_at_empty+0x8b/0x390 fs/namei.c:2924
user_path_at include/linux/namei.h:57 [inline]
do_mount fs/namespace.c:3689 [inline]
__do_sys_mount fs/namespace.c:3898 [inline]
__se_sys_mount+0x66b/0x810 fs/namespace.c:3875
__x64_sys_mount+0xe4/0x140 fs/namespace.c:3875
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0xcf/0x1e0 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x63/0x6b
BUG: KMSAN: uninit-value in hfs_ext_read_extent fs/hfs/extent.c:196 [inline]
BUG: KMSAN: uninit-value in hfs_get_block+0x92d/0x1620 fs/hfs/extent.c:366
hfs_ext_read_extent fs/hfs/extent.c:196 [inline]
hfs_get_block+0x92d/0x1620 fs/hfs/extent.c:366
block_read_full_folio+0x4ff/0x11b0 fs/buffer.c:2271
hfs_read_folio+0x55/0x60 fs/hfs/inode.c:39
filemap_read_folio+0x148/0x4f0 mm/filemap.c:2426
do_read_cache_folio+0x7c8/0xd90 mm/filemap.c:3553
do_read_cache_page mm/filemap.c:3595 [inline]
read_cache_page+0xfb/0x2f0 mm/filemap.c:3604
read_mapping_page include/linux/pagemap.h:755 [inline]
hfs_btree_open+0x928/0x1ae0 fs/hfs/btree.c:78
hfs_mdb_get+0x260c/0x3000 fs/hfs/mdb.c:204
hfs_fill_super+0x1fb1/0x2790 fs/hfs/super.c:406
mount_bdev+0x628/0x920 fs/super.c:1359
hfs_mount+0xcd/0xe0 fs/hfs/super.c:456
legacy_get_tree+0x167/0x2e0 fs/fs_context.c:610
vfs_get_tree+0xdc/0x5d0 fs/super.c:1489
do_new_mount+0x7a9/0x16f0 fs/namespace.c:3145
path_mount+0xf98/0x26a0 fs/namespace.c:3475
do_mount fs/namespace.c:3488 [inline]
__do_sys_mount fs/namespace.c:3697 [inline]
__se_sys_mount+0x919/0x9e0 fs/namespace.c:3674
__ia32_sys_mount+0x15b/0x1b0 fs/namespace.c:3674
do_syscall_32_irqs_on arch/x86/entry/common.c:112 [inline]
__do_fast_syscall_32+0xa2/0x100 arch/x86/entry/common.c:178
do_fast_syscall_32+0x37/0x80 arch/x86/entry/common.c:203
do_SYSENTER_32+0x1f/0x30 arch/x86/entry/common.c:246
entry_SYSENTER_compat_after_hwframe+0x70/0x82
Uninit was created at:
__alloc_pages+0x9a6/0xe00 mm/page_alloc.c:4590
__alloc_pages_node include/linux/gfp.h:238 [inline]
alloc_pages_node include/linux/gfp.h:261 [inline]
alloc_slab_page mm/slub.c:2190 [inline]
allocate_slab mm/slub.c:2354 [inline]
new_slab+0x2d7/0x1400 mm/slub.c:2407
___slab_alloc+0x16b5/0x3970 mm/slub.c:3540
__slab_alloc mm/slub.c:3625 [inline]
__slab_alloc_node mm/slub.c:3678 [inline]
slab_alloc_node mm/slub.c:3850 [inline]
kmem_cache_alloc_lru+0x64d/0xb30 mm/slub.c:3879
alloc_inode_sb include/linux/fs.h:3018 [inline]
hfs_alloc_inode+0x5a/0xc0 fs/hfs/super.c:165
alloc_inode+0x83/0x440 fs/inode.c:260
new_inode_pseudo fs/inode.c:1005 [inline]
new_inode+0x38/0x4f0 fs/inode.c:1031
hfs_new_inode+0x61/0x1010 fs/hfs/inode.c:186
hfs_mkdir+0x54/0x250 fs/hfs/dir.c:228
vfs_mkdir+0x49a/0x700 fs/namei.c:4126
do_mkdirat+0x529/0x810 fs/namei.c:4149
__do_sys_mkdirat fs/namei.c:4164 [inline]
__se_sys_mkdirat fs/namei.c:4162 [inline]
__x64_sys_mkdirat+0xc8/0x120 fs/namei.c:4162
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0xcf/0x1e0 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x63/0x6b
It missed to initialize .tz_secondswest, .cached_start and .cached_blocks
fields in struct hfs_inode_info after hfs_alloc_inode(), fix it. |
| In the Linux kernel, the following vulnerability has been resolved:
x86: stop playing stack games in profile_pc()
The 'profile_pc()' function is used for timer-based profiling, which
isn't really all that relevant any more to begin with, but it also ends
up making assumptions based on the stack layout that aren't necessarily
valid.
Basically, the code tries to account the time spent in spinlocks to the
caller rather than the spinlock, and while I support that as a concept,
it's not worth the code complexity or the KASAN warnings when no serious
profiling is done using timers anyway these days.
And the code really does depend on stack layout that is only true in the
simplest of cases. We've lost the comment at some point (I think when
the 32-bit and 64-bit code was unified), but it used to say:
Assume the lock function has either no stack frame or a copy
of eflags from PUSHF.
which explains why it just blindly loads a word or two straight off the
stack pointer and then takes a minimal look at the values to just check
if they might be eflags or the return pc:
Eflags always has bits 22 and up cleared unlike kernel addresses
but that basic stack layout assumption assumes that there isn't any lock
debugging etc going on that would complicate the code and cause a stack
frame.
It causes KASAN unhappiness reported for years by syzkaller [1] and
others [2].
With no real practical reason for this any more, just remove the code.
Just for historical interest, here's some background commits relating to
this code from 2006:
0cb91a229364 ("i386: Account spinlocks to the caller during profiling for !FP kernels")
31679f38d886 ("Simplify profile_pc on x86-64")
and a code unification from 2009:
ef4512882dbe ("x86: time_32/64.c unify profile_pc")
but the basics of this thing actually goes back to before the git tree. |
| In the Linux kernel, the following vulnerability has been resolved:
ext4: fix access to uninitialised lock in fc replay path
The following kernel trace can be triggered with fstest generic/629 when
executed against a filesystem with fast-commit feature enabled:
INFO: trying to register non-static key.
The code is fine but needs lockdep annotation, or maybe
you didn't initialize this object before use?
turning off the locking correctness validator.
CPU: 0 PID: 866 Comm: mount Not tainted 6.10.0+ #11
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.2-3-gd478f380-prebuilt.qemu.org 04/01/2014
Call Trace:
<TASK>
dump_stack_lvl+0x66/0x90
register_lock_class+0x759/0x7d0
__lock_acquire+0x85/0x2630
? __find_get_block+0xb4/0x380
lock_acquire+0xd1/0x2d0
? __ext4_journal_get_write_access+0xd5/0x160
_raw_spin_lock+0x33/0x40
? __ext4_journal_get_write_access+0xd5/0x160
__ext4_journal_get_write_access+0xd5/0x160
ext4_reserve_inode_write+0x61/0xb0
__ext4_mark_inode_dirty+0x79/0x270
? ext4_ext_replay_set_iblocks+0x2f8/0x450
ext4_ext_replay_set_iblocks+0x330/0x450
ext4_fc_replay+0x14c8/0x1540
? jread+0x88/0x2e0
? rcu_is_watching+0x11/0x40
do_one_pass+0x447/0xd00
jbd2_journal_recover+0x139/0x1b0
jbd2_journal_load+0x96/0x390
ext4_load_and_init_journal+0x253/0xd40
ext4_fill_super+0x2cc6/0x3180
...
In the replay path there's an attempt to lock sbi->s_bdev_wb_lock in
function ext4_check_bdev_write_error(). Unfortunately, at this point this
spinlock has not been initialized yet. Moving it's initialization to an
earlier point in __ext4_fill_super() fixes this splat. |
| This CVE ID has been rejected or withdrawn by its CVE Numbering Authority. |
| In the Linux kernel, the following vulnerability has been resolved:
fs: Fix uninitialized value issue in from_kuid and from_kgid
ocfs2_setattr() uses attr->ia_mode, attr->ia_uid and attr->ia_gid in
a trace point even though ATTR_MODE, ATTR_UID and ATTR_GID aren't set.
Initialize all fields of newattrs to avoid uninitialized variables, by
checking if ATTR_MODE, ATTR_UID, ATTR_GID are initialized, otherwise 0. |
| In the Linux kernel, the following vulnerability has been resolved:
udf: fix uninit-value use in udf_get_fileshortad
Check for overflow when computing alen in udf_current_aext to mitigate
later uninit-value use in udf_get_fileshortad KMSAN bug[1].
After applying the patch reproducer did not trigger any issue[2].
[1] https://syzkaller.appspot.com/bug?extid=8901c4560b7ab5c2f9df
[2] https://syzkaller.appspot.com/x/log.txt?x=10242227980000 |
| In the Linux kernel, the following vulnerability has been resolved:
jfs: Fix uninit-value access of new_ea in ea_buffer
syzbot reports that lzo1x_1_do_compress is using uninit-value:
=====================================================
BUG: KMSAN: uninit-value in lzo1x_1_do_compress+0x19f9/0x2510 lib/lzo/lzo1x_compress.c:178
...
Uninit was stored to memory at:
ea_put fs/jfs/xattr.c:639 [inline]
...
Local variable ea_buf created at:
__jfs_setxattr+0x5d/0x1ae0 fs/jfs/xattr.c:662
__jfs_xattr_set+0xe6/0x1f0 fs/jfs/xattr.c:934
=====================================================
The reason is ea_buf->new_ea is not initialized properly.
Fix this by using memset to empty its content at the beginning
in ea_get(). |
| In the Linux kernel, the following vulnerability has been resolved:
leds: mlxreg: Use devm_mutex_init() for mutex initialization
In this driver LEDs are registered using devm_led_classdev_register()
so they are automatically unregistered after module's remove() is done.
led_classdev_unregister() calls module's led_set_brightness() to turn off
the LEDs and that callback uses mutex which was destroyed already
in module's remove() so use devm API instead. |
| In the Linux kernel, the following vulnerability has been resolved:
bpf: Mark bpf prog stack with kmsan_unposion_memory in interpreter mode
syzbot reported uninit memory usages during map_{lookup,delete}_elem.
==========
BUG: KMSAN: uninit-value in __dev_map_lookup_elem kernel/bpf/devmap.c:441 [inline]
BUG: KMSAN: uninit-value in dev_map_lookup_elem+0xf3/0x170 kernel/bpf/devmap.c:796
__dev_map_lookup_elem kernel/bpf/devmap.c:441 [inline]
dev_map_lookup_elem+0xf3/0x170 kernel/bpf/devmap.c:796
____bpf_map_lookup_elem kernel/bpf/helpers.c:42 [inline]
bpf_map_lookup_elem+0x5c/0x80 kernel/bpf/helpers.c:38
___bpf_prog_run+0x13fe/0xe0f0 kernel/bpf/core.c:1997
__bpf_prog_run256+0xb5/0xe0 kernel/bpf/core.c:2237
==========
The reproducer should be in the interpreter mode.
The C reproducer is trying to run the following bpf prog:
0: (18) r0 = 0x0
2: (18) r1 = map[id:49]
4: (b7) r8 = 16777216
5: (7b) *(u64 *)(r10 -8) = r8
6: (bf) r2 = r10
7: (07) r2 += -229
^^^^^^^^^^
8: (b7) r3 = 8
9: (b7) r4 = 0
10: (85) call dev_map_lookup_elem#1543472
11: (95) exit
It is due to the "void *key" (r2) passed to the helper. bpf allows uninit
stack memory access for bpf prog with the right privileges. This patch
uses kmsan_unpoison_memory() to mark the stack as initialized.
This should address different syzbot reports on the uninit "void *key"
argument during map_{lookup,delete}_elem. |
| In the Linux kernel, the following vulnerability has been resolved:
ext4: fix uninitialized ratelimit_state->lock access in __ext4_fill_super()
In the following concurrency we will access the uninitialized rs->lock:
ext4_fill_super
ext4_register_sysfs
// sysfs registered msg_ratelimit_interval_ms
// Other processes modify rs->interval to
// non-zero via msg_ratelimit_interval_ms
ext4_orphan_cleanup
ext4_msg(sb, KERN_INFO, "Errors on filesystem, "
__ext4_msg
___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state)
if (!rs->interval) // do nothing if interval is 0
return 1;
raw_spin_trylock_irqsave(&rs->lock, flags)
raw_spin_trylock(lock)
_raw_spin_trylock
__raw_spin_trylock
spin_acquire(&lock->dep_map, 0, 1, _RET_IP_)
lock_acquire
__lock_acquire
register_lock_class
assign_lock_key
dump_stack();
ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10);
raw_spin_lock_init(&rs->lock);
// init rs->lock here
and get the following dump_stack:
=========================================================
INFO: trying to register non-static key.
The code is fine but needs lockdep annotation, or maybe
you didn't initialize this object before use?
turning off the locking correctness validator.
CPU: 12 PID: 753 Comm: mount Tainted: G E 6.7.0-rc6-next-20231222 #504
[...]
Call Trace:
dump_stack_lvl+0xc5/0x170
dump_stack+0x18/0x30
register_lock_class+0x740/0x7c0
__lock_acquire+0x69/0x13a0
lock_acquire+0x120/0x450
_raw_spin_trylock+0x98/0xd0
___ratelimit+0xf6/0x220
__ext4_msg+0x7f/0x160 [ext4]
ext4_orphan_cleanup+0x665/0x740 [ext4]
__ext4_fill_super+0x21ea/0x2b10 [ext4]
ext4_fill_super+0x14d/0x360 [ext4]
[...]
=========================================================
Normally interval is 0 until s_msg_ratelimit_state is initialized, so
___ratelimit() does nothing. But registering sysfs precedes initializing
rs->lock, so it is possible to change rs->interval to a non-zero value
via the msg_ratelimit_interval_ms interface of sysfs while rs->lock is
uninitialized, and then a call to ext4_msg triggers the problem by
accessing an uninitialized rs->lock. Therefore register sysfs after all
initializations are complete to avoid such problems. |
| In the Linux kernel, the following vulnerability has been resolved:
btrfs: fix information leak in btrfs_ioctl_logical_to_ino()
Syzbot reported the following information leak for in
btrfs_ioctl_logical_to_ino():
BUG: KMSAN: kernel-infoleak in instrument_copy_to_user include/linux/instrumented.h:114 [inline]
BUG: KMSAN: kernel-infoleak in _copy_to_user+0xbc/0x110 lib/usercopy.c:40
instrument_copy_to_user include/linux/instrumented.h:114 [inline]
_copy_to_user+0xbc/0x110 lib/usercopy.c:40
copy_to_user include/linux/uaccess.h:191 [inline]
btrfs_ioctl_logical_to_ino+0x440/0x750 fs/btrfs/ioctl.c:3499
btrfs_ioctl+0x714/0x1260
vfs_ioctl fs/ioctl.c:51 [inline]
__do_sys_ioctl fs/ioctl.c:904 [inline]
__se_sys_ioctl+0x261/0x450 fs/ioctl.c:890
__x64_sys_ioctl+0x96/0xe0 fs/ioctl.c:890
x64_sys_call+0x1883/0x3b50 arch/x86/include/generated/asm/syscalls_64.h:17
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0xcf/0x1e0 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x77/0x7f
Uninit was created at:
__kmalloc_large_node+0x231/0x370 mm/slub.c:3921
__do_kmalloc_node mm/slub.c:3954 [inline]
__kmalloc_node+0xb07/0x1060 mm/slub.c:3973
kmalloc_node include/linux/slab.h:648 [inline]
kvmalloc_node+0xc0/0x2d0 mm/util.c:634
kvmalloc include/linux/slab.h:766 [inline]
init_data_container+0x49/0x1e0 fs/btrfs/backref.c:2779
btrfs_ioctl_logical_to_ino+0x17c/0x750 fs/btrfs/ioctl.c:3480
btrfs_ioctl+0x714/0x1260
vfs_ioctl fs/ioctl.c:51 [inline]
__do_sys_ioctl fs/ioctl.c:904 [inline]
__se_sys_ioctl+0x261/0x450 fs/ioctl.c:890
__x64_sys_ioctl+0x96/0xe0 fs/ioctl.c:890
x64_sys_call+0x1883/0x3b50 arch/x86/include/generated/asm/syscalls_64.h:17
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0xcf/0x1e0 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x77/0x7f
Bytes 40-65535 of 65536 are uninitialized
Memory access of size 65536 starts at ffff888045a40000
This happens, because we're copying a 'struct btrfs_data_container' back
to user-space. This btrfs_data_container is allocated in
'init_data_container()' via kvmalloc(), which does not zero-fill the
memory.
Fix this by using kvzalloc() which zeroes out the memory on allocation. |