| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
ext4: don't set SB_RDONLY after filesystem errors
When the filesystem is mounted with errors=remount-ro, we were setting
SB_RDONLY flag to stop all filesystem modifications. We knew this misses
proper locking (sb->s_umount) and does not go through proper filesystem
remount procedure but it has been the way this worked since early ext2
days and it was good enough for catastrophic situation damage
mitigation. Recently, syzbot has found a way (see link) to trigger
warnings in filesystem freezing because the code got confused by
SB_RDONLY changing under its hands. Since these days we set
EXT4_FLAGS_SHUTDOWN on the superblock which is enough to stop all
filesystem modifications, modifying SB_RDONLY shouldn't be needed. So
stop doing that. |
| In the Linux kernel, the following vulnerability has been resolved:
vhost_task: Handle SIGKILL by flushing work and exiting
Instead of lingering until the device is closed, this has us handle
SIGKILL by:
1. marking the worker as killed so we no longer try to use it with
new virtqueues and new flush operations.
2. setting the virtqueue to worker mapping so no new works are queued.
3. running all the exiting works. |
| In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: hci_core: cancel all works upon hci_unregister_dev()
syzbot is reporting that calling hci_release_dev() from hci_error_reset()
due to hci_dev_put() from hci_error_reset() can cause deadlock at
destroy_workqueue(), for hci_error_reset() is called from
hdev->req_workqueue which destroy_workqueue() needs to flush.
We need to make sure that hdev->{rx_work,cmd_work,tx_work} which are
queued into hdev->workqueue and hdev->{power_on,error_reset} which are
queued into hdev->req_workqueue are no longer running by the moment
destroy_workqueue(hdev->workqueue);
destroy_workqueue(hdev->req_workqueue);
are called from hci_release_dev().
Call cancel_work_sync() on these work items from hci_unregister_dev()
as soon as hdev->list is removed from hci_dev_list. |
| In the Linux kernel, the following vulnerability has been resolved:
batman-adv: bypass empty buckets in batadv_purge_orig_ref()
Many syzbot reports are pointing to soft lockups in
batadv_purge_orig_ref() [1]
Root cause is unknown, but we can avoid spending too much
time there and perhaps get more interesting reports.
[1]
watchdog: BUG: soft lockup - CPU#0 stuck for 27s! [kworker/u4:6:621]
Modules linked in:
irq event stamp: 6182794
hardirqs last enabled at (6182793): [<ffff8000801dae10>] __local_bh_enable_ip+0x224/0x44c kernel/softirq.c:386
hardirqs last disabled at (6182794): [<ffff80008ad66a78>] __el1_irq arch/arm64/kernel/entry-common.c:533 [inline]
hardirqs last disabled at (6182794): [<ffff80008ad66a78>] el1_interrupt+0x24/0x68 arch/arm64/kernel/entry-common.c:551
softirqs last enabled at (6182792): [<ffff80008aab71c4>] spin_unlock_bh include/linux/spinlock.h:396 [inline]
softirqs last enabled at (6182792): [<ffff80008aab71c4>] batadv_purge_orig_ref+0x114c/0x1228 net/batman-adv/originator.c:1287
softirqs last disabled at (6182790): [<ffff80008aab61dc>] spin_lock_bh include/linux/spinlock.h:356 [inline]
softirqs last disabled at (6182790): [<ffff80008aab61dc>] batadv_purge_orig_ref+0x164/0x1228 net/batman-adv/originator.c:1271
CPU: 0 PID: 621 Comm: kworker/u4:6 Not tainted 6.8.0-rc7-syzkaller-g707081b61156 #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 02/29/2024
Workqueue: bat_events batadv_purge_orig
pstate: 80400005 (Nzcv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--)
pc : should_resched arch/arm64/include/asm/preempt.h:79 [inline]
pc : __local_bh_enable_ip+0x228/0x44c kernel/softirq.c:388
lr : __local_bh_enable_ip+0x224/0x44c kernel/softirq.c:386
sp : ffff800099007970
x29: ffff800099007980 x28: 1fffe00018fce1bd x27: dfff800000000000
x26: ffff0000d2620008 x25: ffff0000c7e70de8 x24: 0000000000000001
x23: 1fffe00018e57781 x22: dfff800000000000 x21: ffff80008aab71c4
x20: ffff0001b40136c0 x19: ffff0000c72bbc08 x18: 1fffe0001a817bb0
x17: ffff800125414000 x16: ffff80008032116c x15: 0000000000000001
x14: 1fffe0001ee9d610 x13: 0000000000000000 x12: 0000000000000003
x11: 0000000000000000 x10: 0000000000ff0100 x9 : 0000000000000000
x8 : 00000000005e5789 x7 : ffff80008aab61dc x6 : 0000000000000000
x5 : 0000000000000000 x4 : 0000000000000001 x3 : 0000000000000000
x2 : 0000000000000006 x1 : 0000000000000080 x0 : ffff800125414000
Call trace:
__daif_local_irq_enable arch/arm64/include/asm/irqflags.h:27 [inline]
arch_local_irq_enable arch/arm64/include/asm/irqflags.h:49 [inline]
__local_bh_enable_ip+0x228/0x44c kernel/softirq.c:386
__raw_spin_unlock_bh include/linux/spinlock_api_smp.h:167 [inline]
_raw_spin_unlock_bh+0x3c/0x4c kernel/locking/spinlock.c:210
spin_unlock_bh include/linux/spinlock.h:396 [inline]
batadv_purge_orig_ref+0x114c/0x1228 net/batman-adv/originator.c:1287
batadv_purge_orig+0x20/0x70 net/batman-adv/originator.c:1300
process_one_work+0x694/0x1204 kernel/workqueue.c:2633
process_scheduled_works kernel/workqueue.c:2706 [inline]
worker_thread+0x938/0xef4 kernel/workqueue.c:2787
kthread+0x288/0x310 kernel/kthread.c:388
ret_from_fork+0x10/0x20 arch/arm64/kernel/entry.S:860
Sending NMI from CPU 0 to CPUs 1:
NMI backtrace for cpu 1
CPU: 1 PID: 0 Comm: swapper/1 Not tainted 6.8.0-rc7-syzkaller-g707081b61156 #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 02/29/2024
pstate: 80400005 (Nzcv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--)
pc : arch_local_irq_enable+0x8/0xc arch/arm64/include/asm/irqflags.h:51
lr : default_idle_call+0xf8/0x128 kernel/sched/idle.c:103
sp : ffff800093a17d30
x29: ffff800093a17d30 x28: dfff800000000000 x27: 1ffff00012742fb4
x26: ffff80008ec9d000 x25: 0000000000000000 x24: 0000000000000002
x23: 1ffff00011d93a74 x22: ffff80008ec9d3a0 x21: 0000000000000000
x20: ffff0000c19dbc00 x19: ffff8000802d0fd8 x18: 1fffe00036804396
x17: ffff80008ec9d000 x16: ffff8000802d089c x15: 0000000000000001
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
ext4: do not create EA inode under buffer lock
ext4_xattr_set_entry() creates new EA inodes while holding buffer lock
on the external xattr block. This is problematic as it nests all the
allocation locking (which acquires locks on other buffers) under the
buffer lock. This can even deadlock when the filesystem is corrupted and
e.g. quota file is setup to contain xattr block as data block. Move the
allocation of EA inode out of ext4_xattr_set_entry() into the callers. |
| In the Linux kernel, the following vulnerability has been resolved:
serial: imx: Introduce timeout when waiting on transmitter empty
By waiting at most 1 second for USR2_TXDC to be set, we avoid a potential
deadlock.
In case of the timeout, there is not much we can do, so we simply ignore
the transmitter state and optimistically try to continue. |
| In the Linux kernel, the following vulnerability has been resolved:
i2c: lpi2c: Avoid calling clk_get_rate during transfer
Instead of repeatedly calling clk_get_rate for each transfer, lock
the clock rate and cache the value.
A deadlock has been observed while adding tlv320aic32x4 audio codec to
the system. When this clock provider adds its clock, the clk mutex is
locked already, it needs to access i2c, which in return needs the mutex
for clk_get_rate as well. |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: lpfc: Release hbalock before calling lpfc_worker_wake_up()
lpfc_worker_wake_up() calls the lpfc_work_done() routine, which takes the
hbalock. Thus, lpfc_worker_wake_up() should not be called while holding the
hbalock to avoid potential deadlock. |
| In the Linux kernel, the following vulnerability has been resolved:
aoe: avoid potential deadlock at set_capacity
Move set_capacity() outside of the section procected by (&d->lock).
To avoid possible interrupt unsafe locking scenario:
CPU0 CPU1
---- ----
[1] lock(&bdev->bd_size_lock);
local_irq_disable();
[2] lock(&d->lock);
[3] lock(&bdev->bd_size_lock);
<Interrupt>
[4] lock(&d->lock);
*** DEADLOCK ***
Where [1](&bdev->bd_size_lock) hold by zram_add()->set_capacity().
[2]lock(&d->lock) hold by aoeblk_gdalloc(). And aoeblk_gdalloc()
is trying to acquire [3](&bdev->bd_size_lock) at set_capacity() call.
In this situation an attempt to acquire [4]lock(&d->lock) from
aoecmd_cfg_rsp() will lead to deadlock.
So the simplest solution is breaking lock dependency
[2](&d->lock) -> [3](&bdev->bd_size_lock) by moving set_capacity()
outside. |
| In the Linux kernel, the following vulnerability has been resolved:
nouveau: offload fence uevents work to workqueue
This should break the deadlock between the fctx lock and the irq lock.
This offloads the processing off the work from the irq into a workqueue. |
| In the Linux kernel, the following vulnerability has been resolved:
smb: client: fix potential deadlock when releasing mids
All release_mid() callers seem to hold a reference of @mid so there is
no need to call kref_put(&mid->refcount, __release_mid) under
@server->mid_lock spinlock. If they don't, then an use-after-free bug
would have occurred anyways.
By getting rid of such spinlock also fixes a potential deadlock as
shown below
CPU 0 CPU 1
------------------------------------------------------------------
cifs_demultiplex_thread() cifs_debug_data_proc_show()
release_mid()
spin_lock(&server->mid_lock);
spin_lock(&cifs_tcp_ses_lock)
spin_lock(&server->mid_lock)
__release_mid()
smb2_find_smb_tcon()
spin_lock(&cifs_tcp_ses_lock) *deadlock* |
| In the Linux kernel, the following vulnerability has been resolved:
sysv: don't call sb_bread() with pointers_lock held
syzbot is reporting sleep in atomic context in SysV filesystem [1], for
sb_bread() is called with rw_spinlock held.
A "write_lock(&pointers_lock) => read_lock(&pointers_lock) deadlock" bug
and a "sb_bread() with write_lock(&pointers_lock)" bug were introduced by
"Replace BKL for chain locking with sysvfs-private rwlock" in Linux 2.5.12.
Then, "[PATCH] err1-40: sysvfs locking fix" in Linux 2.6.8 fixed the
former bug by moving pointers_lock lock to the callers, but instead
introduced a "sb_bread() with read_lock(&pointers_lock)" bug (which made
this problem easier to hit).
Al Viro suggested that why not to do like get_branch()/get_block()/
find_shared() in Minix filesystem does. And doing like that is almost a
revert of "[PATCH] err1-40: sysvfs locking fix" except that get_branch()
from with find_shared() is called without write_lock(&pointers_lock). |
| In the Linux kernel, the following vulnerability has been resolved:
can: j1939: prevent deadlock by changing j1939_socks_lock to rwlock
The following 3 locks would race against each other, causing the
deadlock situation in the Syzbot bug report:
- j1939_socks_lock
- active_session_list_lock
- sk_session_queue_lock
A reasonable fix is to change j1939_socks_lock to an rwlock, since in
the rare situations where a write lock is required for the linked list
that j1939_socks_lock is protecting, the code does not attempt to
acquire any more locks. This would break the circular lock dependency,
where, for example, the current thread already locks j1939_socks_lock
and attempts to acquire sk_session_queue_lock, and at the same time,
another thread attempts to acquire j1939_socks_lock while holding
sk_session_queue_lock.
NOTE: This patch along does not fix the unregister_netdevice bug
reported by Syzbot; instead, it solves a deadlock situation to prepare
for one or more further patches to actually fix the Syzbot bug, which
appears to be a reference counting problem within the j1939 codebase.
[mkl: remove unrelated newline change] |
| In the Linux kernel, the following vulnerability has been resolved:
PM: sleep: Fix possible deadlocks in core system-wide PM code
It is reported that in low-memory situations the system-wide resume core
code deadlocks, because async_schedule_dev() executes its argument
function synchronously if it cannot allocate memory (and not only in
that case) and that function attempts to acquire a mutex that is already
held. Executing the argument function synchronously from within
dpm_async_fn() may also be problematic for ordering reasons (it may
cause a consumer device's resume callback to be invoked before a
requisite supplier device's one, for example).
Address this by changing the code in question to use
async_schedule_dev_nocall() for scheduling the asynchronous
execution of device suspend and resume functions and to directly
run them synchronously if async_schedule_dev_nocall() returns false. |
| In the Linux kernel, the following vulnerability has been resolved:
drm: Don't unref the same fb many times by mistake due to deadlock handling
If we get a deadlock after the fb lookup in drm_mode_page_flip_ioctl()
we proceed to unref the fb and then retry the whole thing from the top.
But we forget to reset the fb pointer back to NULL, and so if we then
get another error during the retry, before the fb lookup, we proceed
the unref the same fb again without having gotten another reference.
The end result is that the fb will (eventually) end up being freed
while it's still in use.
Reset fb to NULL once we've unreffed it to avoid doing it again
until we've done another fb lookup.
This turned out to be pretty easy to hit on a DG2 when doing async
flips (and CONFIG_DEBUG_WW_MUTEX_SLOWPATH=y). The first symptom I
saw that drm_closefb() simply got stuck in a busy loop while walking
the framebuffer list. Fortunately I was able to convince it to oops
instead, and from there it was easier to track down the culprit. |
| In the Linux kernel, the following vulnerability has been resolved:
PM: hibernate: Avoid deadlock in hibernate_compressor_param_set()
syzbot reported a deadlock in lock_system_sleep() (see below).
The write operation to "/sys/module/hibernate/parameters/compressor"
conflicts with the registration of ieee80211 device, resulting in a deadlock
when attempting to acquire system_transition_mutex under param_lock.
To avoid this deadlock, change hibernate_compressor_param_set() to use
mutex_trylock() for attempting to acquire system_transition_mutex and
return -EBUSY when it fails.
Task flags need not be saved or adjusted before calling
mutex_trylock(&system_transition_mutex) because the caller is not going
to end up waiting for this mutex and if it runs concurrently with system
suspend in progress, it will be frozen properly when it returns to user
space.
syzbot report:
syz-executor895/5833 is trying to acquire lock:
ffffffff8e0828c8 (system_transition_mutex){+.+.}-{4:4}, at: lock_system_sleep+0x87/0xa0 kernel/power/main.c:56
but task is already holding lock:
ffffffff8e07dc68 (param_lock){+.+.}-{4:4}, at: kernel_param_lock kernel/params.c:607 [inline]
ffffffff8e07dc68 (param_lock){+.+.}-{4:4}, at: param_attr_store+0xe6/0x300 kernel/params.c:586
which lock already depends on the new lock.
the existing dependency chain (in reverse order) is:
-> #3 (param_lock){+.+.}-{4:4}:
__mutex_lock_common kernel/locking/mutex.c:585 [inline]
__mutex_lock+0x19b/0xb10 kernel/locking/mutex.c:730
ieee80211_rate_control_ops_get net/mac80211/rate.c:220 [inline]
rate_control_alloc net/mac80211/rate.c:266 [inline]
ieee80211_init_rate_ctrl_alg+0x18d/0x6b0 net/mac80211/rate.c:1015
ieee80211_register_hw+0x20cd/0x4060 net/mac80211/main.c:1531
mac80211_hwsim_new_radio+0x304e/0x54e0 drivers/net/wireless/virtual/mac80211_hwsim.c:5558
init_mac80211_hwsim+0x432/0x8c0 drivers/net/wireless/virtual/mac80211_hwsim.c:6910
do_one_initcall+0x128/0x700 init/main.c:1257
do_initcall_level init/main.c:1319 [inline]
do_initcalls init/main.c:1335 [inline]
do_basic_setup init/main.c:1354 [inline]
kernel_init_freeable+0x5c7/0x900 init/main.c:1568
kernel_init+0x1c/0x2b0 init/main.c:1457
ret_from_fork+0x45/0x80 arch/x86/kernel/process.c:148
ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:244
-> #2 (rtnl_mutex){+.+.}-{4:4}:
__mutex_lock_common kernel/locking/mutex.c:585 [inline]
__mutex_lock+0x19b/0xb10 kernel/locking/mutex.c:730
wg_pm_notification drivers/net/wireguard/device.c:80 [inline]
wg_pm_notification+0x49/0x180 drivers/net/wireguard/device.c:64
notifier_call_chain+0xb7/0x410 kernel/notifier.c:85
notifier_call_chain_robust kernel/notifier.c:120 [inline]
blocking_notifier_call_chain_robust kernel/notifier.c:345 [inline]
blocking_notifier_call_chain_robust+0xc9/0x170 kernel/notifier.c:333
pm_notifier_call_chain_robust+0x27/0x60 kernel/power/main.c:102
snapshot_open+0x189/0x2b0 kernel/power/user.c:77
misc_open+0x35a/0x420 drivers/char/misc.c:179
chrdev_open+0x237/0x6a0 fs/char_dev.c:414
do_dentry_open+0x735/0x1c40 fs/open.c:956
vfs_open+0x82/0x3f0 fs/open.c:1086
do_open fs/namei.c:3830 [inline]
path_openat+0x1e88/0x2d80 fs/namei.c:3989
do_filp_open+0x20c/0x470 fs/namei.c:4016
do_sys_openat2+0x17a/0x1e0 fs/open.c:1428
do_sys_open fs/open.c:1443 [inline]
__do_sys_openat fs/open.c:1459 [inline]
__se_sys_openat fs/open.c:1454 [inline]
__x64_sys_openat+0x175/0x210 fs/open.c:1454
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0xcd/0x250 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x77/0x7f
-> #1 ((pm_chain_head).rwsem){++++}-{4:4}:
down_read+0x9a/0x330 kernel/locking/rwsem.c:1524
blocking_notifier_call_chain_robust kerne
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
net: vlan: don't propagate flags on open
With the device instance lock, there is now a possibility of a deadlock:
[ 1.211455] ============================================
[ 1.211571] WARNING: possible recursive locking detected
[ 1.211687] 6.14.0-rc5-01215-g032756b4ca7a-dirty #5 Not tainted
[ 1.211823] --------------------------------------------
[ 1.211936] ip/184 is trying to acquire lock:
[ 1.212032] ffff8881024a4c30 (&dev->lock){+.+.}-{4:4}, at: dev_set_allmulti+0x4e/0xb0
[ 1.212207]
[ 1.212207] but task is already holding lock:
[ 1.212332] ffff8881024a4c30 (&dev->lock){+.+.}-{4:4}, at: dev_open+0x50/0xb0
[ 1.212487]
[ 1.212487] other info that might help us debug this:
[ 1.212626] Possible unsafe locking scenario:
[ 1.212626]
[ 1.212751] CPU0
[ 1.212815] ----
[ 1.212871] lock(&dev->lock);
[ 1.212944] lock(&dev->lock);
[ 1.213016]
[ 1.213016] *** DEADLOCK ***
[ 1.213016]
[ 1.213143] May be due to missing lock nesting notation
[ 1.213143]
[ 1.213294] 3 locks held by ip/184:
[ 1.213371] #0: ffffffff838b53e0 (rtnl_mutex){+.+.}-{4:4}, at: rtnl_nets_lock+0x1b/0xa0
[ 1.213543] #1: ffffffff84e5fc70 (&net->rtnl_mutex){+.+.}-{4:4}, at: rtnl_nets_lock+0x37/0xa0
[ 1.213727] #2: ffff8881024a4c30 (&dev->lock){+.+.}-{4:4}, at: dev_open+0x50/0xb0
[ 1.213895]
[ 1.213895] stack backtrace:
[ 1.213991] CPU: 0 UID: 0 PID: 184 Comm: ip Not tainted 6.14.0-rc5-01215-g032756b4ca7a-dirty #5
[ 1.213993] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS Arch Linux 1.16.3-1-1 04/01/2014
[ 1.213994] Call Trace:
[ 1.213995] <TASK>
[ 1.213996] dump_stack_lvl+0x8e/0xd0
[ 1.214000] print_deadlock_bug+0x28b/0x2a0
[ 1.214020] lock_acquire+0xea/0x2a0
[ 1.214027] __mutex_lock+0xbf/0xd40
[ 1.214038] dev_set_allmulti+0x4e/0xb0 # real_dev->flags & IFF_ALLMULTI
[ 1.214040] vlan_dev_open+0xa5/0x170 # ndo_open on vlandev
[ 1.214042] __dev_open+0x145/0x270
[ 1.214046] __dev_change_flags+0xb0/0x1e0
[ 1.214051] netif_change_flags+0x22/0x60 # IFF_UP vlandev
[ 1.214053] dev_change_flags+0x61/0xb0 # for each device in group from dev->vlan_info
[ 1.214055] vlan_device_event+0x766/0x7c0 # on netdevsim0
[ 1.214058] notifier_call_chain+0x78/0x120
[ 1.214062] netif_open+0x6d/0x90
[ 1.214064] dev_open+0x5b/0xb0 # locks netdevsim0
[ 1.214066] bond_enslave+0x64c/0x1230
[ 1.214075] do_set_master+0x175/0x1e0 # on netdevsim0
[ 1.214077] do_setlink+0x516/0x13b0
[ 1.214094] rtnl_newlink+0xaba/0xb80
[ 1.214132] rtnetlink_rcv_msg+0x440/0x490
[ 1.214144] netlink_rcv_skb+0xeb/0x120
[ 1.214150] netlink_unicast+0x1f9/0x320
[ 1.214153] netlink_sendmsg+0x346/0x3f0
[ 1.214157] __sock_sendmsg+0x86/0xb0
[ 1.214160] ____sys_sendmsg+0x1c8/0x220
[ 1.214164] ___sys_sendmsg+0x28f/0x2d0
[ 1.214179] __x64_sys_sendmsg+0xef/0x140
[ 1.214184] do_syscall_64+0xec/0x1d0
[ 1.214190] entry_SYSCALL_64_after_hwframe+0x77/0x7f
[ 1.214191] RIP: 0033:0x7f2d1b4a7e56
Device setup:
netdevsim0 (down)
^ ^
bond netdevsim1.100@netdevsim1 allmulticast=on (down)
When we enslave the lower device (netdevsim0) which has a vlan, we
propagate vlan's allmuti/promisc flags during ndo_open. This causes
(re)locking on of the real_dev.
Propagate allmulti/promisc on flags change, not on the open. There
is a slight semantics change that vlans that are down now propagate
the flags, but this seems unlikely to result in the real issues.
Reproducer:
echo 0 1 > /sys/bus/netdevsim/new_device
dev_path=$(ls -d /sys/bus/netdevsim/devices/netdevsim0/net/*)
dev=$(echo $dev_path | rev | cut -d/ -f1 | rev)
ip link set dev $dev name netdevsim0
ip link set dev netdevsim0 up
ip link add link netdevsim0 name netdevsim0.100 type vlan id 100
ip link set dev netdevsim0.100 allm
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
drm/vc4: Fix deadlock on DSI device attach error
DSI device attach to DSI host will be done with host device's lock
held.
Un-registering host in "device attach" error path (ex: probe retry)
will result in deadlock with below call trace and non operational
DSI display.
Startup Call trace:
[ 35.043036] rt_mutex_slowlock.constprop.21+0x184/0x1b8
[ 35.043048] mutex_lock_nested+0x7c/0xc8
[ 35.043060] device_del+0x4c/0x3e8
[ 35.043075] device_unregister+0x20/0x40
[ 35.043082] mipi_dsi_remove_device_fn+0x18/0x28
[ 35.043093] device_for_each_child+0x68/0xb0
[ 35.043105] mipi_dsi_host_unregister+0x40/0x90
[ 35.043115] vc4_dsi_host_attach+0xf0/0x120 [vc4]
[ 35.043199] mipi_dsi_attach+0x30/0x48
[ 35.043209] tc358762_probe+0x128/0x164 [tc358762]
[ 35.043225] mipi_dsi_drv_probe+0x28/0x38
[ 35.043234] really_probe+0xc0/0x318
[ 35.043244] __driver_probe_device+0x80/0xe8
[ 35.043254] driver_probe_device+0xb8/0x118
[ 35.043263] __device_attach_driver+0x98/0xe8
[ 35.043273] bus_for_each_drv+0x84/0xd8
[ 35.043281] __device_attach+0xf0/0x150
[ 35.043290] device_initial_probe+0x1c/0x28
[ 35.043300] bus_probe_device+0xa4/0xb0
[ 35.043308] deferred_probe_work_func+0xa0/0xe0
[ 35.043318] process_one_work+0x254/0x700
[ 35.043330] worker_thread+0x4c/0x448
[ 35.043339] kthread+0x19c/0x1a8
[ 35.043348] ret_from_fork+0x10/0x20
Shutdown Call trace:
[ 365.565417] Call trace:
[ 365.565423] __switch_to+0x148/0x200
[ 365.565452] __schedule+0x340/0x9c8
[ 365.565467] schedule+0x48/0x110
[ 365.565479] schedule_timeout+0x3b0/0x448
[ 365.565496] wait_for_completion+0xac/0x138
[ 365.565509] __flush_work+0x218/0x4e0
[ 365.565523] flush_work+0x1c/0x28
[ 365.565536] wait_for_device_probe+0x68/0x158
[ 365.565550] device_shutdown+0x24/0x348
[ 365.565561] kernel_restart_prepare+0x40/0x50
[ 365.565578] kernel_restart+0x20/0x70
[ 365.565591] __do_sys_reboot+0x10c/0x220
[ 365.565605] __arm64_sys_reboot+0x2c/0x38
[ 365.565619] invoke_syscall+0x4c/0x110
[ 365.565634] el0_svc_common.constprop.3+0xfc/0x120
[ 365.565648] do_el0_svc+0x2c/0x90
[ 365.565661] el0_svc+0x4c/0xf0
[ 365.565671] el0t_64_sync_handler+0x90/0xb8
[ 365.565682] el0t_64_sync+0x180/0x184 |
| In the Linux kernel, the following vulnerability has been resolved:
btrfs: fix deadlock between quota disable and qgroup rescan worker
Quota disable ioctl starts a transaction before waiting for the qgroup
rescan worker completes. However, this wait can be infinite and results
in deadlock because of circular dependency among the quota disable
ioctl, the qgroup rescan worker and the other task with transaction such
as block group relocation task.
The deadlock happens with the steps following:
1) Task A calls ioctl to disable quota. It starts a transaction and
waits for qgroup rescan worker completes.
2) Task B such as block group relocation task starts a transaction and
joins to the transaction that task A started. Then task B commits to
the transaction. In this commit, task B waits for a commit by task A.
3) Task C as the qgroup rescan worker starts its job and starts a
transaction. In this transaction start, task C waits for completion
of the transaction that task A started and task B committed.
This deadlock was found with fstests test case btrfs/115 and a zoned
null_blk device. The test case enables and disables quota, and the
block group reclaim was triggered during the quota disable by chance.
The deadlock was also observed by running quota enable and disable in
parallel with 'btrfs balance' command on regular null_blk devices.
An example report of the deadlock:
[372.469894] INFO: task kworker/u16:6:103 blocked for more than 122 seconds.
[372.479944] Not tainted 5.16.0-rc8 #7
[372.485067] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
[372.493898] task:kworker/u16:6 state:D stack: 0 pid: 103 ppid: 2 flags:0x00004000
[372.503285] Workqueue: btrfs-qgroup-rescan btrfs_work_helper [btrfs]
[372.510782] Call Trace:
[372.514092] <TASK>
[372.521684] __schedule+0xb56/0x4850
[372.530104] ? io_schedule_timeout+0x190/0x190
[372.538842] ? lockdep_hardirqs_on+0x7e/0x100
[372.547092] ? _raw_spin_unlock_irqrestore+0x3e/0x60
[372.555591] schedule+0xe0/0x270
[372.561894] btrfs_commit_transaction+0x18bb/0x2610 [btrfs]
[372.570506] ? btrfs_apply_pending_changes+0x50/0x50 [btrfs]
[372.578875] ? free_unref_page+0x3f2/0x650
[372.585484] ? finish_wait+0x270/0x270
[372.591594] ? release_extent_buffer+0x224/0x420 [btrfs]
[372.599264] btrfs_qgroup_rescan_worker+0xc13/0x10c0 [btrfs]
[372.607157] ? lock_release+0x3a9/0x6d0
[372.613054] ? btrfs_qgroup_account_extent+0xda0/0xda0 [btrfs]
[372.620960] ? do_raw_spin_lock+0x11e/0x250
[372.627137] ? rwlock_bug.part.0+0x90/0x90
[372.633215] ? lock_is_held_type+0xe4/0x140
[372.639404] btrfs_work_helper+0x1ae/0xa90 [btrfs]
[372.646268] process_one_work+0x7e9/0x1320
[372.652321] ? lock_release+0x6d0/0x6d0
[372.658081] ? pwq_dec_nr_in_flight+0x230/0x230
[372.664513] ? rwlock_bug.part.0+0x90/0x90
[372.670529] worker_thread+0x59e/0xf90
[372.676172] ? process_one_work+0x1320/0x1320
[372.682440] kthread+0x3b9/0x490
[372.687550] ? _raw_spin_unlock_irq+0x24/0x50
[372.693811] ? set_kthread_struct+0x100/0x100
[372.700052] ret_from_fork+0x22/0x30
[372.705517] </TASK>
[372.709747] INFO: task btrfs-transacti:2347 blocked for more than 123 seconds.
[372.729827] Not tainted 5.16.0-rc8 #7
[372.745907] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
[372.767106] task:btrfs-transacti state:D stack: 0 pid: 2347 ppid: 2 flags:0x00004000
[372.787776] Call Trace:
[372.801652] <TASK>
[372.812961] __schedule+0xb56/0x4850
[372.830011] ? io_schedule_timeout+0x190/0x190
[372.852547] ? lockdep_hardirqs_on+0x7e/0x100
[372.871761] ? _raw_spin_unlock_irqrestore+0x3e/0x60
[372.886792] schedule+0xe0/0x270
[372.901685] wait_current_trans+0x22c/0x310 [btrfs]
[372.919743] ? btrfs_put_transaction+0x3d0/0x3d0 [btrfs]
[372.938923] ? finish_wait+0x270/0x270
[372.959085] ? join_transaction+0xc7
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
nvme-multipath: defer partition scanning
We need to suppress the partition scan from occuring within the
controller's scan_work context. If a path error occurs here, the IO will
wait until a path becomes available or all paths are torn down, but that
action also occurs within scan_work, so it would deadlock. Defer the
partion scan to a different context that does not block scan_work. |