| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| Plesk Obsidian versions 8.0.1 through 18.0.73 are vulnerable to a Denial of Service (DoS) condition. The vulnerability exists in the get_password.php endpoint, where a crafted request containing a malicious payload can cause the affected web interface to continuously reload, rendering the service unavailable to legitimate users. An attacker can exploit this issue remotely without authentication, resulting in a persistent availability impact on the affected Plesk Obsidian instance. |
| Unchecked input for loop condition vulnerability in XML-RPC in Liferay Portal 7.4.0 through 7.4.3.111, and older unsupported versions, and Liferay DXP 2023.Q4.0, 2023.Q3.1 through 2023.Q3.4, 7.4 GA through update 92, 7.3 GA through update 35, and older unsupported versions allows remote attackers to perform a denial-of-service (DoS) attacks via a crafted XML-RPC request. |
| Issue summary: Generating excessively long X9.42 DH keys or checking
excessively long X9.42 DH keys or parameters may be very slow.
Impact summary: Applications that use the functions DH_generate_key() to
generate an X9.42 DH key may experience long delays. Likewise, applications
that use DH_check_pub_key(), DH_check_pub_key_ex() or EVP_PKEY_public_check()
to check an X9.42 DH key or X9.42 DH parameters may experience long delays.
Where the key or parameters that are being checked have been obtained from
an untrusted source this may lead to a Denial of Service.
While DH_check() performs all the necessary checks (as of CVE-2023-3817),
DH_check_pub_key() doesn't make any of these checks, and is therefore
vulnerable for excessively large P and Q parameters.
Likewise, while DH_generate_key() performs a check for an excessively large
P, it doesn't check for an excessively large Q.
An application that calls DH_generate_key() or DH_check_pub_key() and
supplies a key or parameters obtained from an untrusted source could be
vulnerable to a Denial of Service attack.
DH_generate_key() and DH_check_pub_key() are also called by a number of
other OpenSSL functions. An application calling any of those other
functions may similarly be affected. The other functions affected by this
are DH_check_pub_key_ex(), EVP_PKEY_public_check(), and EVP_PKEY_generate().
Also vulnerable are the OpenSSL pkey command line application when using the
"-pubcheck" option, as well as the OpenSSL genpkey command line application.
The OpenSSL SSL/TLS implementation is not affected by this issue.
The OpenSSL 3.0 and 3.1 FIPS providers are not affected by this issue. |
| In the Linux kernel, the following vulnerability has been resolved:
RDMA/hns: Fix soft lockup during bt pages loop
Driver runs a for-loop when allocating bt pages and mapping them with
buffer pages. When a large buffer (e.g. MR over 100GB) is being allocated,
it may require a considerable loop count. This will lead to soft lockup:
watchdog: BUG: soft lockup - CPU#27 stuck for 22s!
...
Call trace:
hem_list_alloc_mid_bt+0x124/0x394 [hns_roce_hw_v2]
hns_roce_hem_list_request+0xf8/0x160 [hns_roce_hw_v2]
hns_roce_mtr_create+0x2e4/0x360 [hns_roce_hw_v2]
alloc_mr_pbl+0xd4/0x17c [hns_roce_hw_v2]
hns_roce_reg_user_mr+0xf8/0x190 [hns_roce_hw_v2]
ib_uverbs_reg_mr+0x118/0x290
watchdog: BUG: soft lockup - CPU#35 stuck for 23s!
...
Call trace:
hns_roce_hem_list_find_mtt+0x7c/0xb0 [hns_roce_hw_v2]
mtr_map_bufs+0xc4/0x204 [hns_roce_hw_v2]
hns_roce_mtr_create+0x31c/0x3c4 [hns_roce_hw_v2]
alloc_mr_pbl+0xb0/0x160 [hns_roce_hw_v2]
hns_roce_reg_user_mr+0x108/0x1c0 [hns_roce_hw_v2]
ib_uverbs_reg_mr+0x120/0x2bc
Add a cond_resched() to fix soft lockup during these loops. In order not
to affect the allocation performance of normal-size buffer, set the loop
count of a 100GB MR as the threshold to call cond_resched(). |
| Uncontrolled recursion in XPath evaluation in libxml2 up to and including version 2.9.14 allows a local attacker to cause a stack overflow via crafted expressions. XPath processing functions `xmlXPathRunEval`, `xmlXPathCtxtCompile`, and `xmlXPathEvalExpr` were resetting recursion depth to zero before making potentially recursive calls. When such functions were called recursively this could allow for uncontrolled recursion and lead to a stack overflow. These functions now preserve recursion depth across recursive calls, allowing recursion depth to be controlled. |
| SAP Business Planning and Consolidation allows an authenticated standard user to call a function module by crafting specific parameters that causes a loop, consuming excessive resources and resulting in system unavailability. This leads to high impact on the availability of the application, there is no impact on confidentiality or integrity. |
| .NET and Visual Studio Denial of Service Vulnerability |
| Relative Path Traversal vulnerabilities in ASPECT allow access to file resources if session administrator credentials become compromised.
This issue affects ASPECT-Enterprise: through 3.08.03; NEXUS Series: through 3.08.03; MATRIX Series: through 3.08.03. |
| An Unchecked Loop Condition in ASPECT provides an attacker the ability to maliciously consume system resources if session administrator credentials become compromised
This issue affects ASPECT-Enterprise: through 3.08.03; NEXUS Series: through 3.08.03; MATRIX Series: through 3.08.03. |
| An Unchecked Input for Loop Condition in RT-Labs P-Net version 1.0.1 or earlier allows an attacker to cause IO devices that use the library to enter an infinite loop by sending a malicious RPC packet. |
| Issue summary: Checking excessively long DH keys or parameters may be very slow.
Impact summary: Applications that use the functions DH_check(), DH_check_ex()
or EVP_PKEY_param_check() to check a DH key or DH parameters may experience long
delays. Where the key or parameters that are being checked have been obtained
from an untrusted source this may lead to a Denial of Service.
The function DH_check() performs various checks on DH parameters. After fixing
CVE-2023-3446 it was discovered that a large q parameter value can also trigger
an overly long computation during some of these checks. A correct q value,
if present, cannot be larger than the modulus p parameter, thus it is
unnecessary to perform these checks if q is larger than p.
An application that calls DH_check() and supplies a key or parameters obtained
from an untrusted source could be vulnerable to a Denial of Service attack.
The function DH_check() is itself called by a number of other OpenSSL functions.
An application calling any of those other functions may similarly be affected.
The other functions affected by this are DH_check_ex() and
EVP_PKEY_param_check().
Also vulnerable are the OpenSSL dhparam and pkeyparam command line applications
when using the "-check" option.
The OpenSSL SSL/TLS implementation is not affected by this issue.
The OpenSSL 3.0 and 3.1 FIPS providers are not affected by this issue. |
| In the Linux kernel, the following vulnerability has been resolved:
ASoC: Intel: soc-acpi-intel-mtl-match: add missing empty item
There is no links_num in struct snd_soc_acpi_mach {}, and we test
!link->num_adr as a condition to end the loop in hda_sdw_machine_select().
So an empty item in struct snd_soc_acpi_link_adr array is required. |
| In the Linux kernel, the following vulnerability has been resolved:
ARM: ep93xx: Add terminator to gpiod_lookup_table
Without the terminator, if a con_id is passed to gpio_find() that
does not exist in the lookup table the function will not stop looping
correctly, and eventually cause an oops. |
| In the Linux kernel, the following vulnerability has been resolved:
netdevsim: avoid potential loop in nsim_dev_trap_report_work()
Many syzbot reports include the following trace [1]
If nsim_dev_trap_report_work() can not grab the mutex,
it should rearm itself at least one jiffie later.
[1]
Sending NMI from CPU 1 to CPUs 0:
NMI backtrace for cpu 0
CPU: 0 PID: 32383 Comm: kworker/0:2 Not tainted 6.8.0-rc2-syzkaller-00031-g861c0981648f #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 11/17/2023
Workqueue: events nsim_dev_trap_report_work
RIP: 0010:bytes_is_nonzero mm/kasan/generic.c:89 [inline]
RIP: 0010:memory_is_nonzero mm/kasan/generic.c:104 [inline]
RIP: 0010:memory_is_poisoned_n mm/kasan/generic.c:129 [inline]
RIP: 0010:memory_is_poisoned mm/kasan/generic.c:161 [inline]
RIP: 0010:check_region_inline mm/kasan/generic.c:180 [inline]
RIP: 0010:kasan_check_range+0x101/0x190 mm/kasan/generic.c:189
Code: 07 49 39 d1 75 0a 45 3a 11 b8 01 00 00 00 7c 0b 44 89 c2 e8 21 ed ff ff 83 f0 01 5b 5d 41 5c c3 48 85 d2 74 4f 48 01 ea eb 09 <48> 83 c0 01 48 39 d0 74 41 80 38 00 74 f2 eb b6 41 bc 08 00 00 00
RSP: 0018:ffffc90012dcf998 EFLAGS: 00000046
RAX: fffffbfff258af1e RBX: fffffbfff258af1f RCX: ffffffff8168eda3
RDX: fffffbfff258af1f RSI: 0000000000000004 RDI: ffffffff92c578f0
RBP: fffffbfff258af1e R08: 0000000000000000 R09: fffffbfff258af1e
R10: ffffffff92c578f3 R11: ffffffff8acbcbc0 R12: 0000000000000002
R13: ffff88806db38400 R14: 1ffff920025b9f42 R15: ffffffff92c578e8
FS: 0000000000000000(0000) GS:ffff8880b9800000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 000000c00994e078 CR3: 000000002c250000 CR4: 00000000003506f0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
<NMI>
</NMI>
<TASK>
instrument_atomic_read include/linux/instrumented.h:68 [inline]
atomic_read include/linux/atomic/atomic-instrumented.h:32 [inline]
queued_spin_is_locked include/asm-generic/qspinlock.h:57 [inline]
debug_spin_unlock kernel/locking/spinlock_debug.c:101 [inline]
do_raw_spin_unlock+0x53/0x230 kernel/locking/spinlock_debug.c:141
__raw_spin_unlock_irqrestore include/linux/spinlock_api_smp.h:150 [inline]
_raw_spin_unlock_irqrestore+0x22/0x70 kernel/locking/spinlock.c:194
debug_object_activate+0x349/0x540 lib/debugobjects.c:726
debug_work_activate kernel/workqueue.c:578 [inline]
insert_work+0x30/0x230 kernel/workqueue.c:1650
__queue_work+0x62e/0x11d0 kernel/workqueue.c:1802
__queue_delayed_work+0x1bf/0x270 kernel/workqueue.c:1953
queue_delayed_work_on+0x106/0x130 kernel/workqueue.c:1989
queue_delayed_work include/linux/workqueue.h:563 [inline]
schedule_delayed_work include/linux/workqueue.h:677 [inline]
nsim_dev_trap_report_work+0x9c0/0xc80 drivers/net/netdevsim/dev.c:842
process_one_work+0x886/0x15d0 kernel/workqueue.c:2633
process_scheduled_works kernel/workqueue.c:2706 [inline]
worker_thread+0x8b9/0x1290 kernel/workqueue.c:2787
kthread+0x2c6/0x3a0 kernel/kthread.c:388
ret_from_fork+0x45/0x80 arch/x86/kernel/process.c:147
ret_from_fork_asm+0x11/0x20 arch/x86/entry/entry_64.S:242
</TASK> |
| In the Linux kernel, the following vulnerability has been resolved:
netfs: Only call folio_start_fscache() one time for each folio
If a network filesystem using netfs implements a clamp_length()
function, it can set subrequest lengths smaller than a page size.
When we loop through the folios in netfs_rreq_unlock_folios() to
set any folios to be written back, we need to make sure we only
call folio_start_fscache() once for each folio.
Otherwise, this simple testcase:
mount -o fsc,rsize=1024,wsize=1024 127.0.0.1:/export /mnt/nfs
dd if=/dev/zero of=/mnt/nfs/file.bin bs=4096 count=1
1+0 records in
1+0 records out
4096 bytes (4.1 kB, 4.0 KiB) copied, 0.0126359 s, 324 kB/s
echo 3 > /proc/sys/vm/drop_caches
cat /mnt/nfs/file.bin > /dev/null
will trigger an oops similar to the following:
page dumped because: VM_BUG_ON_FOLIO(folio_test_private_2(folio))
------------[ cut here ]------------
kernel BUG at include/linux/netfs.h:44!
...
CPU: 5 PID: 134 Comm: kworker/u16:5 Kdump: loaded Not tainted 6.4.0-rc5
...
RIP: 0010:netfs_rreq_unlock_folios+0x68e/0x730 [netfs]
...
Call Trace:
netfs_rreq_assess+0x497/0x660 [netfs]
netfs_subreq_terminated+0x32b/0x610 [netfs]
nfs_netfs_read_completion+0x14e/0x1a0 [nfs]
nfs_read_completion+0x2f9/0x330 [nfs]
rpc_free_task+0x72/0xa0 [sunrpc]
rpc_async_release+0x46/0x70 [sunrpc]
process_one_work+0x3bd/0x710
worker_thread+0x89/0x610
kthread+0x181/0x1c0
ret_from_fork+0x29/0x50 |
| Issue summary: Checking excessively long DH keys or parameters may be very slow.
Impact summary: Applications that use the functions DH_check(), DH_check_ex()
or EVP_PKEY_param_check() to check a DH key or DH parameters may experience long
delays. Where the key or parameters that are being checked have been obtained
from an untrusted source this may lead to a Denial of Service.
The function DH_check() performs various checks on DH parameters. One of those
checks confirms that the modulus ('p' parameter) is not too large. Trying to use
a very large modulus is slow and OpenSSL will not normally use a modulus which
is over 10,000 bits in length.
However the DH_check() function checks numerous aspects of the key or parameters
that have been supplied. Some of those checks use the supplied modulus value
even if it has already been found to be too large.
An application that calls DH_check() and supplies a key or parameters obtained
from an untrusted source could be vulernable to a Denial of Service attack.
The function DH_check() is itself called by a number of other OpenSSL functions.
An application calling any of those other functions may similarly be affected.
The other functions affected by this are DH_check_ex() and
EVP_PKEY_param_check().
Also vulnerable are the OpenSSL dhparam and pkeyparam command line applications
when using the '-check' option.
The OpenSSL SSL/TLS implementation is not affected by this issue.
The OpenSSL 3.0 and 3.1 FIPS providers are not affected by this issue. |
| OFPPacketQueue in parser.py in Faucet SDN Ryu 4.34 allows attackers to cause a denial of service (infinite loop) via OFPQueueProp.len=0. |
| NLnet Labs Unbound up to and including version 1.21.0 contains a vulnerability when handling replies with very large RRsets that it needs to perform name compression for. Malicious upstreams responses with very large RRsets can cause Unbound to spend a considerable time applying name compression to downstream replies. This can lead to degraded performance and eventually denial of service in well orchestrated attacks. The vulnerability can be exploited by a malicious actor querying Unbound for the specially crafted contents of a malicious zone with very large RRsets. Before Unbound replies to the query it will try to apply name compression which was an unbounded operation that could lock the CPU until the whole packet was complete. Unbound version 1.21.1 introduces a hard limit on the number of name compression calculations it is willing to do per packet. Packets that need more compression will result in semi-compressed packets or truncated packets, even on TCP for huge messages, to avoid locking the CPU for long. This change should not affect normal DNS traffic. |
| Issue summary: Checking excessively long DSA keys or parameters may be very
slow.
Impact summary: Applications that use the functions EVP_PKEY_param_check()
or EVP_PKEY_public_check() to check a DSA public key or DSA parameters may
experience long delays. Where the key or parameters that are being checked
have been obtained from an untrusted source this may lead to a Denial of
Service.
The functions EVP_PKEY_param_check() or EVP_PKEY_public_check() perform
various checks on DSA parameters. Some of those computations take a long time
if the modulus (`p` parameter) is too large.
Trying to use a very large modulus is slow and OpenSSL will not allow using
public keys with a modulus which is over 10,000 bits in length for signature
verification. However the key and parameter check functions do not limit
the modulus size when performing the checks.
An application that calls EVP_PKEY_param_check() or EVP_PKEY_public_check()
and supplies a key or parameters obtained from an untrusted source could be
vulnerable to a Denial of Service attack.
These functions are not called by OpenSSL itself on untrusted DSA keys so
only applications that directly call these functions may be vulnerable.
Also vulnerable are the OpenSSL pkey and pkeyparam command line applications
when using the `-check` option.
The OpenSSL SSL/TLS implementation is not affected by this issue.
The OpenSSL 3.0 and 3.1 FIPS providers are affected by this issue. |
| Issue summary: Checking excessively long invalid RSA public keys may take
a long time.
Impact summary: Applications that use the function EVP_PKEY_public_check()
to check RSA public keys may experience long delays. Where the key that
is being checked has been obtained from an untrusted source this may lead
to a Denial of Service.
When function EVP_PKEY_public_check() is called on RSA public keys,
a computation is done to confirm that the RSA modulus, n, is composite.
For valid RSA keys, n is a product of two or more large primes and this
computation completes quickly. However, if n is an overly large prime,
then this computation would take a long time.
An application that calls EVP_PKEY_public_check() and supplies an RSA key
obtained from an untrusted source could be vulnerable to a Denial of Service
attack.
The function EVP_PKEY_public_check() is not called from other OpenSSL
functions however it is called from the OpenSSL pkey command line
application. For that reason that application is also vulnerable if used
with the '-pubin' and '-check' options on untrusted data.
The OpenSSL SSL/TLS implementation is not affected by this issue.
The OpenSSL 3.0 and 3.1 FIPS providers are affected by this issue. |