| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| iccDEV provides a set of libraries and tools that allow for the interaction, manipulation, and application of ICC color management profiles. Prior to version 2.3.1.2, iccDEV is vulnerable to heap buffer overflow in the ToneMap parser. This issue has been patched in version 2.3.1.2. |
| iccDEV provides a set of libraries and tools that allow for the interaction, manipulation, and application of International Color Consortium (ICC) color management profiles. A vulnerability present in versions prior to 2.3.1.2 affects users of the iccDEV library who process ICC color profiles. It results in heap buffer overflow in `CIccTagLut8::Validate()`. Version 2.3.1.2 contains a patch. No known workarounds are available. |
| iccDEV provides a set of libraries and tools that allow for the interaction, manipulation, and application of International Color Consortium (ICC) color management profiles. A vulnerability present in versions prior to 2.3.1.2 affects users of the iccDEV library who process ICC color profiles. It results in heap buffer overflow in `CIccTagLut16::Validate()`. Version 2.3.1.2 contains a patch. No known workarounds are available. |
| iccDEV provides a set of libraries and tools that allow for the interaction, manipulation, and application of International Color Consortium (ICC) color management profiles. A vulnerability present in versions prior to 2.3.1.2 affects users of the iccDEV library who process ICC color profiles. It results in unicode buffer overflow in `CIccTagTextDescription`. Version 2.3.1.2 contains a patch. No known workarounds are available. |
| There's a flaw in the nbdkit server when handling responses from its plugins regarding the status of data blocks. If a client makes a specific request for a very large data range, and a plugin responds with an even larger single block, the nbdkit server can encounter a critical internal error, leading to a denial-of-service. |
| A vulnerability has been identified in the libarchive library. This flaw involves an 'off-by-one' miscalculation when handling prefixes and suffixes for file names. This can lead to a 1-byte write overflow. While seemingly small, such an overflow can corrupt adjacent memory, leading to unpredictable program behavior, crashes, or in specific circumstances, could be leveraged as a building block for more sophisticated exploitation. This bug affects libarchive versions prior to 3.8.0. |
| In the Linux kernel, the following vulnerability has been resolved:
octeontx2-af: avoid off-by-one read from userspace
We try to access count + 1 byte from userspace with memdup_user(buffer,
count + 1). However, the userspace only provides buffer of count bytes and
only these count bytes are verified to be okay to access. To ensure the
copied buffer is NUL terminated, we use memdup_user_nul instead. |
| In the Linux kernel, the following vulnerability has been resolved:
mmmremap.c: avoid pointless invalidate_range_start/end on mremap(old_size=0)
If an mremap() syscall with old_size=0 ends up in move_page_tables(), it
will call invalidate_range_start()/invalidate_range_end() unnecessarily,
i.e. with an empty range.
This causes a WARN in KVM's mmu_notifier. In the past, empty ranges
have been diagnosed to be off-by-one bugs, hence the WARNing. Given the
low (so far) number of unique reports, the benefits of detecting more
buggy callers seem to outweigh the cost of having to fix cases such as
this one, where userspace is doing something silly. In this particular
case, an early return from move_page_tables() is enough to fix the
issue. |
| Buffer Over-read, Off-by-one Error vulnerability in RTI Connext Professional (Core Libraries) allows File Manipulation, Overread Buffers.This issue affects Connext Professional: from 7.4.0 before 7.6.0, from 7.0.0 before 7.3.0.8, from 6.1.0 before 6.1.2.26, from 6.0.0 before 6.0.*, from 5.3.0 before 5.3.*, from 4.4a before 5.2.*. |
| In the Linux kernel, the following vulnerability has been resolved:
modpost: fix off by one in is_executable_section()
The > comparison should be >= to prevent an out of bounds array
access. |
| A flaw was found in glibc. An off-by-one buffer overflow and underflow in getcwd() may lead to memory corruption when the size of the buffer is exactly 1. A local attacker who can control the input buffer and size passed to getcwd() in a setuid program could use this flaw to potentially execute arbitrary code and escalate their privileges on the system. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: mt76: mt7925: fix off by one in mt7925_mcu_hw_scan()
The ssid->ssids[] and sreq->ssids[] arrays have MT7925_RNR_SCAN_MAX_BSSIDS
elements so this >= needs to be > to prevent an out of bounds access. |
| Off by one error in V8 in Google Chrome prior to 141.0.7390.54 allowed a remote attacker to perform an out of bounds memory read via a crafted HTML page. (Chromium security severity: Medium) |
| In the Linux kernel, the following vulnerability has been resolved:
ext4: fix another off-by-one fsmap error on 1k block filesystems
Apparently syzbot figured out that issuing this FSMAP call:
struct fsmap_head cmd = {
.fmh_count = ...;
.fmh_keys = {
{ .fmr_device = /* ext4 dev */, .fmr_physical = 0, },
{ .fmr_device = /* ext4 dev */, .fmr_physical = 0, },
},
...
};
ret = ioctl(fd, FS_IOC_GETFSMAP, &cmd);
Produces this crash if the underlying filesystem is a 1k-block ext4
filesystem:
kernel BUG at fs/ext4/ext4.h:3331!
invalid opcode: 0000 [#1] PREEMPT SMP
CPU: 3 PID: 3227965 Comm: xfs_io Tainted: G W O 6.2.0-rc8-achx
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.15.0-1 04/01/2014
RIP: 0010:ext4_mb_load_buddy_gfp+0x47c/0x570 [ext4]
RSP: 0018:ffffc90007c03998 EFLAGS: 00010246
RAX: ffff888004978000 RBX: ffffc90007c03a20 RCX: ffff888041618000
RDX: 0000000000000000 RSI: 00000000000005a4 RDI: ffffffffa0c99b11
RBP: ffff888012330000 R08: ffffffffa0c2b7d0 R09: 0000000000000400
R10: ffffc90007c03950 R11: 0000000000000000 R12: 0000000000000001
R13: 00000000ffffffff R14: 0000000000000c40 R15: ffff88802678c398
FS: 00007fdf2020c880(0000) GS:ffff88807e100000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007ffd318a5fe8 CR3: 000000007f80f001 CR4: 00000000001706e0
Call Trace:
<TASK>
ext4_mballoc_query_range+0x4b/0x210 [ext4 dfa189daddffe8fecd3cdfd00564e0f265a8ab80]
ext4_getfsmap_datadev+0x713/0x890 [ext4 dfa189daddffe8fecd3cdfd00564e0f265a8ab80]
ext4_getfsmap+0x2b7/0x330 [ext4 dfa189daddffe8fecd3cdfd00564e0f265a8ab80]
ext4_ioc_getfsmap+0x153/0x2b0 [ext4 dfa189daddffe8fecd3cdfd00564e0f265a8ab80]
__ext4_ioctl+0x2a7/0x17e0 [ext4 dfa189daddffe8fecd3cdfd00564e0f265a8ab80]
__x64_sys_ioctl+0x82/0xa0
do_syscall_64+0x2b/0x80
entry_SYSCALL_64_after_hwframe+0x46/0xb0
RIP: 0033:0x7fdf20558aff
RSP: 002b:00007ffd318a9e30 EFLAGS: 00000246 ORIG_RAX: 0000000000000010
RAX: ffffffffffffffda RBX: 00000000000200c0 RCX: 00007fdf20558aff
RDX: 00007fdf1feb2010 RSI: 00000000c0c0583b RDI: 0000000000000003
RBP: 00005625c0634be0 R08: 00005625c0634c40 R09: 0000000000000001
R10: 0000000000000000 R11: 0000000000000246 R12: 00007fdf1feb2010
R13: 00005625be70d994 R14: 0000000000000800 R15: 0000000000000000
For GETFSMAP calls, the caller selects a physical block device by
writing its block number into fsmap_head.fmh_keys[01].fmr_device.
To query mappings for a subrange of the device, the starting byte of the
range is written to fsmap_head.fmh_keys[0].fmr_physical and the last
byte of the range goes in fsmap_head.fmh_keys[1].fmr_physical.
IOWs, to query what mappings overlap with bytes 3-14 of /dev/sda, you'd
set the inputs as follows:
fmh_keys[0] = { .fmr_device = major(8, 0), .fmr_physical = 3},
fmh_keys[1] = { .fmr_device = major(8, 0), .fmr_physical = 14},
Which would return you whatever is mapped in the 12 bytes starting at
physical offset 3.
The crash is due to insufficient range validation of keys[1] in
ext4_getfsmap_datadev. On 1k-block filesystems, block 0 is not part of
the filesystem, which means that s_first_data_block is nonzero.
ext4_get_group_no_and_offset subtracts this quantity from the blocknr
argument before cracking it into a group number and a block number
within a group. IOWs, block group 0 spans blocks 1-8192 (1-based)
instead of 0-8191 (0-based) like what happens with larger blocksizes.
The net result of this encoding is that blocknr < s_first_data_block is
not a valid input to this function. The end_fsb variable is set from
the keys that are copied from userspace, which means that in the above
example, its value is zero. That leads to an underflow here:
blocknr = blocknr - le32_to_cpu(es->s_first_data_block);
The division then operates on -1:
offset = do_div(blocknr, EXT4_BLOCKS_PER_GROUP(sb)) >>
EXT4_SB(sb)->s_cluster_bits;
Leaving an impossibly large group number (2^32-1) in blocknr.
ext4_getfsmap_check_keys checked that keys[0
---truncated--- |
| Sudo before 1.9.5p2 contains an off-by-one error that can result in a heap-based buffer overflow, which allows privilege escalation to root via "sudoedit -s" and a command-line argument that ends with a single backslash character. |
| An off-by-one error flaw was found in the udevListInterfacesByStatus() function in libvirt when the number of interfaces exceeds the size of the `names` array. This issue can be reproduced by sending specially crafted data to the libvirt daemon, allowing an unprivileged client to perform a denial of service attack by causing the libvirt daemon to crash. |
| In the Linux kernel, the following vulnerability has been resolved:
ext4: fix off-by-one error in do_split
Syzkaller detected a use-after-free issue in ext4_insert_dentry that was
caused by out-of-bounds access due to incorrect splitting in do_split.
BUG: KASAN: use-after-free in ext4_insert_dentry+0x36a/0x6d0 fs/ext4/namei.c:2109
Write of size 251 at addr ffff888074572f14 by task syz-executor335/5847
CPU: 0 UID: 0 PID: 5847 Comm: syz-executor335 Not tainted 6.12.0-rc6-syzkaller-00318-ga9cda7c0ffed #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 10/30/2024
Call Trace:
<TASK>
__dump_stack lib/dump_stack.c:94 [inline]
dump_stack_lvl+0x241/0x360 lib/dump_stack.c:120
print_address_description mm/kasan/report.c:377 [inline]
print_report+0x169/0x550 mm/kasan/report.c:488
kasan_report+0x143/0x180 mm/kasan/report.c:601
kasan_check_range+0x282/0x290 mm/kasan/generic.c:189
__asan_memcpy+0x40/0x70 mm/kasan/shadow.c:106
ext4_insert_dentry+0x36a/0x6d0 fs/ext4/namei.c:2109
add_dirent_to_buf+0x3d9/0x750 fs/ext4/namei.c:2154
make_indexed_dir+0xf98/0x1600 fs/ext4/namei.c:2351
ext4_add_entry+0x222a/0x25d0 fs/ext4/namei.c:2455
ext4_add_nondir+0x8d/0x290 fs/ext4/namei.c:2796
ext4_symlink+0x920/0xb50 fs/ext4/namei.c:3431
vfs_symlink+0x137/0x2e0 fs/namei.c:4615
do_symlinkat+0x222/0x3a0 fs/namei.c:4641
__do_sys_symlink fs/namei.c:4662 [inline]
__se_sys_symlink fs/namei.c:4660 [inline]
__x64_sys_symlink+0x7a/0x90 fs/namei.c:4660
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0xf3/0x230 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x77/0x7f
</TASK>
The following loop is located right above 'if' statement.
for (i = count-1; i >= 0; i--) {
/* is more than half of this entry in 2nd half of the block? */
if (size + map[i].size/2 > blocksize/2)
break;
size += map[i].size;
move++;
}
'i' in this case could go down to -1, in which case sum of active entries
wouldn't exceed half the block size, but previous behaviour would also do
split in half if sum would exceed at the very last block, which in case of
having too many long name files in a single block could lead to
out-of-bounds access and following use-after-free.
Found by Linux Verification Center (linuxtesting.org) with Syzkaller. |
| GIMP PSP File Parsing Off-By-One Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of GIMP. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file.
The specific flaw exists within the parsing of PSP files. Crafted data in a PSP file can trigger an off-by-one error when calculating a location to write within a heap-based buffer. An attacker can leverage this vulnerability to execute code in the context of the current process.
. Was ZDI-CAN-22097. |
| A buffer overrun can be triggered in X.509 certificate verification, specifically in name constraint checking. Note that this occurs after certificate chain signature verification and requires either a CA to have signed a malicious certificate or for an application to continue certificate verification despite failure to construct a path to a trusted issuer. An attacker can craft a malicious email address in a certificate to overflow an arbitrary number of bytes containing the `.' character (decimal 46) on the stack. This buffer overflow could result in a crash (causing a denial of service). In a TLS client, this can be triggered by connecting to a malicious server. In a TLS server, this can be triggered if the server requests client authentication and a malicious client connects.
|
| In rds_recv_track_latency in net/rds/af_rds.c in the Linux kernel through 6.7.1, there is an off-by-one error for an RDS_MSG_RX_DGRAM_TRACE_MAX comparison, resulting in out-of-bounds access. |