| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| urllib3 is a user-friendly HTTP client library for Python. When using urllib3's proxy support with `ProxyManager`, the `Proxy-Authorization` header is only sent to the configured proxy, as expected. However, when sending HTTP requests *without* using urllib3's proxy support, it's possible to accidentally configure the `Proxy-Authorization` header even though it won't have any effect as the request is not using a forwarding proxy or a tunneling proxy. In those cases, urllib3 doesn't treat the `Proxy-Authorization` HTTP header as one carrying authentication material and thus doesn't strip the header on cross-origin redirects. Because this is a highly unlikely scenario, we believe the severity of this vulnerability is low for almost all users. Out of an abundance of caution urllib3 will automatically strip the `Proxy-Authorization` header during cross-origin redirects to avoid the small chance that users are doing this on accident. Users should use urllib3's proxy support or disable automatic redirects to achieve safe processing of the `Proxy-Authorization` header, but we still decided to strip the header by default in order to further protect users who aren't using the correct approach. We believe the number of usages affected by this advisory is low. It requires all of the following to be true to be exploited: 1. Setting the `Proxy-Authorization` header without using urllib3's built-in proxy support. 2. Not disabling HTTP redirects. 3. Either not using an HTTPS origin server or for the proxy or target origin to redirect to a malicious origin. Users are advised to update to either version 1.26.19 or version 2.2.2. Users unable to upgrade may use the `Proxy-Authorization` header with urllib3's `ProxyManager`, disable HTTP redirects using `redirects=False` when sending requests, or not user the `Proxy-Authorization` header as mitigations. |
| A flaw was found in the github.com/containers/image library. This flaw allows attackers to trigger unexpected authenticated registry accesses on behalf of a victim user, causing resource exhaustion, local path traversal, and other attacks. |
| A vulnerability was found in Golang FIPS OpenSSL. This flaw allows a malicious user to randomly cause an uninitialized buffer length variable with a zeroed buffer to be returned in FIPS mode. It may also be possible to force a false positive match between non-equal hashes when comparing a trusted computed hmac sum to an untrusted input sum if an attacker can send a zeroed buffer in place of a pre-computed sum. It is also possible to force a derived key to be all zeros instead of an unpredictable value. This may have follow-on implications for the Go TLS stack. |
| A flaw was found in ansible-collection-community-general. This vulnerability allows for information exposure (IE) of sensitive credentials, specifically plaintext passwords, via verbose output when running Ansible with debug modes. Attackers with access to logs could retrieve these secrets and potentially compromise Keycloak accounts or administrative access. |
| In Paramiko before 2.10.1, a race condition (between creation and chmod) in the write_private_key_file function could allow unauthorized information disclosure. |
| A memory leak flaw was found in Golang in the RSA encrypting/decrypting code, which might lead to a resource exhaustion vulnerability using attacker-controlled inputs. The memory leak happens in github.com/golang-fips/openssl/openssl/rsa.go#L113. The objects leaked are pkey and ctx. That function uses named return parameters to free pkey and ctx if there is an error initializing the context or setting the different properties. All return statements related to error cases follow the "return nil, nil, fail(...)" pattern, meaning that pkey and ctx will be nil inside the deferred function that should free them. |
| A flaw was found in multiple versions of OpenvSwitch. Specially crafted LLDP packets can cause memory to be lost when allocating data to handle specific optional TLVs, potentially causing a denial of service. The highest threat from this vulnerability is to system availability. |
| Werkzeug is a comprehensive WSGI web application library. The debugger in affected versions of Werkzeug can allow an attacker to execute code on a developer's machine under some circumstances. This requires the attacker to get the developer to interact with a domain and subdomain they control, and enter the debugger PIN, but if they are successful it allows access to the debugger even if it is only running on localhost. This also requires the attacker to guess a URL in the developer's application that will trigger the debugger. This vulnerability is fixed in 3.0.3. |
| The mistral-dashboard plugin for openstack has a local file inclusion vulnerability through the 'Create Workbook' feature that may result in disclosure of arbitrary local files content. |
| An issue in Gevent before version 23.9.0 allows a remote attacker to escalate privileges via a crafted script to the WSGIServer component. |
| A flaw was found in the openstack-tripleo-common component of the Red Hat OpenStack Platform (RHOSP) director. This vulnerability allows an attacker to deploy potentially compromised container images via disabling TLS certificate verification for registry mirrors, which could enable a man-in-the-middle (MITM) attack. |
| An incomplete fix for CVE-2023-1625 was found in openstack-heat. Sensitive information may possibly be disclosed through the OpenStack stack abandon command with the hidden feature set to True and the CVE-2023-1625 fix applied. |
| An flaw was found in the OpenStack Platform (RHOSP) director, a toolset for installing and managing a complete RHOSP environment. Plaintext passwords may be stored in log files, which can expose sensitive information to anyone with access to the logs. |
| A vulnerability was found in python-glance-store. The issue occurs when the package logs the access_key for the glance-store when the DEBUG log level is enabled. |
| A regression was introduced in the Red Hat build of python-eventlet due to a change in the patch application strategy, resulting in a patch for CVE-2021-21419 not being applied for all builds of all products. |
| An access-control flaw was found in the OpenStack Designate component where private configuration information including access keys to BIND were improperly made world readable. A malicious attacker with access to any container could exploit this flaw to access sensitive information. |
| In AngularJS before 1.7.9 the function `merge()` could be tricked into adding or modifying properties of `Object.prototype` using a `__proto__` payload. |
| An uncontrolled resource consumption flaw was found in openstack-neutron. This flaw allows a remote authenticated user to query a list of security groups for an invalid project. This issue creates resources that are unconstrained by the user's quota. If a malicious user were to submit a significant number of requests, this could lead to a denial of service. |
| The etcd package distributed with the Red Hat OpenStack platform has an incomplete fix for CVE-2023-39325/CVE-2023-44487, known as Rapid Reset. This issue occurs because the etcd package in the Red Hat OpenStack platform is using http://golang.org/x/net/http2 instead of the one provided by Red Hat Enterprise Linux versions, meaning it should be updated at compile time instead. |
| The etcd package distributed with the Red Hat OpenStack platform has an incomplete fix for CVE-2021-44716. This issue occurs because the etcd package in the Red Hat OpenStack platform is using http://golang.org/x/net/http2 instead of the one provided by Red Hat Enterprise Linux versions, meaning it should be updated at compile time instead. |