Search Results (3 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2026-22700 1 Rustcrypto 1 Elliptic-curves 2026-01-12 7.5 High
RustCrypto: Elliptic Curves is general purpose Elliptic Curve Cryptography (ECC) support, including types and traits for representing various elliptic curve forms, scalars, points, and public/secret keys composed thereof. In versions 0.14.0-pre.0 and 0.14.0-rc.0, a denial-of-service vulnerability exists in the SM2 public-key encryption (PKE) implementation: the decrypt() path performs unchecked slice::split_at operations on input buffers derived from untrusted ciphertext. An attacker can submit short/undersized ciphertext or carefully-crafted DER-encoded structures to trigger bounds-check panics (Rust unwinding) which crash the calling thread or process. This issue has been patched via commit e60e991.
CVE-2026-22699 1 Rustcrypto 1 Elliptic-curves 2026-01-12 7.5 High
RustCrypto: Elliptic Curves is general purpose Elliptic Curve Cryptography (ECC) support, including types and traits for representing various elliptic curve forms, scalars, points, and public/secret keys composed thereof. In versions 0.14.0-pre.0 and 0.14.0-rc.0, a denial-of-service vulnerability exists in the SM2 PKE decryption path where an invalid elliptic-curve point (C1) is decoded and the resulting value is unwrapped without checking. Specifically, AffinePoint::from_encoded_point(&encoded_c1) may return a None/CtOption::None when the supplied coordinates are syntactically valid but do not lie on the SM2 curve. The calling code previously used .unwrap(), causing a panic when presented with such input. This issue has been patched via commit 085b7be.
CVE-2026-22698 1 Rustcrypto 1 Elliptic-curves 2026-01-12 N/A
RustCrypto: Elliptic Curves is general purpose Elliptic Curve Cryptography (ECC) support, including types and traits for representing various elliptic curve forms, scalars, points, and public/secret keys composed thereof. In versions 0.14.0-pre.0 and 0.14.0-rc.0, a critical vulnerability exists in the SM2 Public Key Encryption (PKE) implementation where the ephemeral nonce k is generated with severely reduced entropy. A unit mismatch error causes the nonce generation function to request only 32 bits of randomness instead of the expected 256 bits. This reduces the security of the encryption from a 128-bit level to a trivial 16-bit level, allowing a practical attack to recover the nonce k and decrypt any ciphertext given only the public key and ciphertext. This issue has been patched via commit e4f7778.