| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| The Master Addons For Elementor plugin for WordPress is vulnerable to Stored Cross-Site Scripting via the 'ma_el_bh_table_btn_text' parameter in versions up to, and including, 2.1.1 due to insufficient input sanitization and output escaping. This makes it possible for authenticated attackers, with contributor-level access and above, to inject arbitrary web scripts in pages that will execute whenever a user accesses an injected page. |
| Improper Neutralization of Special Elements used in an SQL Command ('SQL Injection') vulnerability in Kolay Software Inc. Talentics allows Blind SQL Injection.This issue affects Talentics: through 20022026.
NOTE: The vendor was contacted early about this disclosure but did not respond in any way. |
| Incorrect Authorization vulnerability in ash-project ash allows Authentication Bypass. This vulnerability is associated with program files lib/ash/policy/policy.ex and program routines 'Elixir.Ash.Policy.Policy':expression/2.
This issue affects ash: from pkg:hex/ash@3.6.3 before pkg:hex/ash@3.7.1, from 3.6.3 before 3.7.1, from 79749c2685ea031ebb2de8cf60cc5edced6a8dd0 before 8b83efa225f657bfc3656ad8ee8485f9b2de923d. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/exynos: vidi: use ctx->lock to protect struct vidi_context member variables related to memory alloc/free
Exynos Virtual Display driver performs memory alloc/free operations
without lock protection, which easily causes concurrency problem.
For example, use-after-free can occur in race scenario like this:
```
CPU0 CPU1 CPU2
---- ---- ----
vidi_connection_ioctl()
if (vidi->connection) // true
drm_edid = drm_edid_alloc(); // alloc drm_edid
...
ctx->raw_edid = drm_edid;
...
drm_mode_getconnector()
drm_helper_probe_single_connector_modes()
vidi_get_modes()
if (ctx->raw_edid) // true
drm_edid_dup(ctx->raw_edid);
if (!drm_edid) // false
...
vidi_connection_ioctl()
if (vidi->connection) // false
drm_edid_free(ctx->raw_edid); // free drm_edid
...
drm_edid_alloc(drm_edid->edid)
kmemdup(edid); // UAF!!
...
```
To prevent these vulns, at least in vidi_context, member variables related
to memory alloc/free should be protected with ctx->lock. |
| In the Linux kernel, the following vulnerability has been resolved:
ksmbd: add chann_lock to protect ksmbd_chann_list xarray
ksmbd_chann_list xarray lacks synchronization, allowing use-after-free in
multi-channel sessions (between lookup_chann_list() and ksmbd_chann_del).
Adds rw_semaphore chann_lock to struct ksmbd_session and protects
all xa_load/xa_store/xa_erase accesses. |
| In the Linux kernel, the following vulnerability has been resolved:
ksmbd: fix infinite loop caused by next_smb2_rcv_hdr_off reset in error paths
The problem occurs when a signed request fails smb2 signature verification
check. In __process_request(), if check_sign_req() returns an error,
set_smb2_rsp_status(work, STATUS_ACCESS_DENIED) is called.
set_smb2_rsp_status() set work->next_smb2_rcv_hdr_off as zero. By resetting
next_smb2_rcv_hdr_off to zero, the pointer to the next command in the chain
is lost. Consequently, is_chained_smb2_message() continues to point to
the same request header instead of advancing. If the header's NextCommand
field is non-zero, the function returns true, causing __handle_ksmbd_work()
to repeatedly process the same failed request in an infinite loop.
This results in the kernel log being flooded with "bad smb2 signature"
messages and high CPU usage.
This patch fixes the issue by changing the return value from
SERVER_HANDLER_CONTINUE to SERVER_HANDLER_ABORT. This ensures that
the processing loop terminates immediately rather than attempting to
continue from an invalidated offset. |
| In the Linux kernel, the following vulnerability has been resolved:
riscv: trace: fix snapshot deadlock with sbi ecall
If sbi_ecall.c's functions are traceable,
echo "__sbi_ecall:snapshot" > /sys/kernel/tracing/set_ftrace_filter
may get the kernel into a deadlock.
(Functions in sbi_ecall.c are excluded from tracing if
CONFIG_RISCV_ALTERNATIVE_EARLY is set.)
__sbi_ecall triggers a snapshot of the ringbuffer. The snapshot code
raises an IPI interrupt, which results in another call to __sbi_ecall
and another snapshot...
All it takes to get into this endless loop is one initial __sbi_ecall.
On RISC-V systems without SSTC extension, the clock events in
timer-riscv.c issue periodic sbi ecalls, making the problem easy to
trigger.
Always exclude the sbi_ecall.c functions from tracing to fix the
potential deadlock.
sbi ecalls can easiliy be logged via trace events, excluding ecall
functions from function tracing is not a big limitation. |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: target: iscsi: Fix use-after-free in iscsit_dec_conn_usage_count()
In iscsit_dec_conn_usage_count(), the function calls complete() while
holding the conn->conn_usage_lock. As soon as complete() is invoked, the
waiter (such as iscsit_close_connection()) may wake up and proceed to free
the iscsit_conn structure.
If the waiter frees the memory before the current thread reaches
spin_unlock_bh(), it results in a KASAN slab-use-after-free as the function
attempts to release a lock within the already-freed connection structure.
Fix this by releasing the spinlock before calling complete(). |
| In the Linux kernel, the following vulnerability has been resolved:
x86/vmware: Fix hypercall clobbers
Fedora QA reported the following panic:
BUG: unable to handle page fault for address: 0000000040003e54
#PF: supervisor write access in kernel mode
#PF: error_code(0x0002) - not-present page
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS edk2-20251119-3.fc43 11/19/2025
RIP: 0010:vmware_hypercall4.constprop.0+0x52/0x90
..
Call Trace:
vmmouse_report_events+0x13e/0x1b0
psmouse_handle_byte+0x15/0x60
ps2_interrupt+0x8a/0xd0
...
because the QEMU VMware mouse emulation is buggy, and clears the top 32
bits of %rdi that the kernel kept a pointer in.
The QEMU vmmouse driver saves and restores the register state in a
"uint32_t data[6];" and as a result restores the state with the high
bits all cleared.
RDI originally contained the value of a valid kernel stack address
(0xff5eeb3240003e54). After the vmware hypercall it now contains
0x40003e54, and we get a page fault as a result when it is dereferenced.
The proper fix would be in QEMU, but this works around the issue in the
kernel to keep old setups working, when old kernels had not happened to
keep any state in %rdi over the hypercall.
In theory this same issue exists for all the hypercalls in the vmmouse
driver; in practice it has only been seen with vmware_hypercall3() and
vmware_hypercall4(). For now, just mark RDI/RSI as clobbered for those
two calls. This should have a minimal effect on code generation overall
as it should be rare for the compiler to want to make RDI/RSI live
across hypercalls. |
| In the Linux kernel, the following vulnerability has been resolved:
btrfs: reject new transactions if the fs is fully read-only
[BUG]
There is a bug report where a heavily fuzzed fs is mounted with all
rescue mount options, which leads to the following warnings during
unmount:
BTRFS: Transaction aborted (error -22)
Modules linked in:
CPU: 0 UID: 0 PID: 9758 Comm: repro.out Not tainted
6.19.0-rc5-00002-gb71e635feefc #7 PREEMPT(full)
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.15.0-1 04/01/2014
RIP: 0010:find_free_extent_update_loop fs/btrfs/extent-tree.c:4208 [inline]
RIP: 0010:find_free_extent+0x52f0/0x5d20 fs/btrfs/extent-tree.c:4611
Call Trace:
<TASK>
btrfs_reserve_extent+0x2cd/0x790 fs/btrfs/extent-tree.c:4705
btrfs_alloc_tree_block+0x1e1/0x10e0 fs/btrfs/extent-tree.c:5157
btrfs_force_cow_block+0x578/0x2410 fs/btrfs/ctree.c:517
btrfs_cow_block+0x3c4/0xa80 fs/btrfs/ctree.c:708
btrfs_search_slot+0xcad/0x2b50 fs/btrfs/ctree.c:2130
btrfs_truncate_inode_items+0x45d/0x2350 fs/btrfs/inode-item.c:499
btrfs_evict_inode+0x923/0xe70 fs/btrfs/inode.c:5628
evict+0x5f4/0xae0 fs/inode.c:837
__dentry_kill+0x209/0x660 fs/dcache.c:670
finish_dput+0xc9/0x480 fs/dcache.c:879
shrink_dcache_for_umount+0xa0/0x170 fs/dcache.c:1661
generic_shutdown_super+0x67/0x2c0 fs/super.c:621
kill_anon_super+0x3b/0x70 fs/super.c:1289
btrfs_kill_super+0x41/0x50 fs/btrfs/super.c:2127
deactivate_locked_super+0xbc/0x130 fs/super.c:474
cleanup_mnt+0x425/0x4c0 fs/namespace.c:1318
task_work_run+0x1d4/0x260 kernel/task_work.c:233
exit_task_work include/linux/task_work.h:40 [inline]
do_exit+0x694/0x22f0 kernel/exit.c:971
do_group_exit+0x21c/0x2d0 kernel/exit.c:1112
__do_sys_exit_group kernel/exit.c:1123 [inline]
__se_sys_exit_group kernel/exit.c:1121 [inline]
__x64_sys_exit_group+0x3f/0x40 kernel/exit.c:1121
x64_sys_call+0x2210/0x2210 arch/x86/include/generated/asm/syscalls_64.h:232
do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline]
do_syscall_64+0xe8/0xf80 arch/x86/entry/syscall_64.c:94
entry_SYSCALL_64_after_hwframe+0x77/0x7f
RIP: 0033:0x44f639
Code: Unable to access opcode bytes at 0x44f60f.
RSP: 002b:00007ffc15c4e088 EFLAGS: 00000246 ORIG_RAX: 00000000000000e7
RAX: ffffffffffffffda RBX: 00000000004c32f0 RCX: 000000000044f639
RDX: 000000000000003c RSI: 00000000000000e7 RDI: 0000000000000001
RBP: 0000000000000001 R08: ffffffffffffffc0 R09: 0000000000000000
R10: 0000000000000000 R11: 0000000000000246 R12: 00000000004c32f0
R13: 0000000000000001 R14: 0000000000000000 R15: 0000000000000001
</TASK>
Since rescue mount options will mark the full fs read-only, there should
be no new transaction triggered.
But during unmount we will evict all inodes, which can trigger a new
transaction, and triggers warnings on a heavily corrupted fs.
[CAUSE]
Btrfs allows new transaction even on a read-only fs, this is to allow
log replay happen even on read-only mounts, just like what ext4/xfs do.
However with rescue mount options, the fs is fully read-only and cannot
be remounted read-write, thus in that case we should also reject any new
transactions.
[FIX]
If we find the fs has rescue mount options, we should treat the fs as
error, so that no new transaction can be started. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amd/pm: Disable MMIO access during SMU Mode 1 reset
During Mode 1 reset, the ASIC undergoes a reset cycle and becomes
temporarily inaccessible via PCIe. Any attempt to access MMIO registers
during this window (e.g., from interrupt handlers or other driver threads)
can result in uncompleted PCIe transactions, leading to NMI panics or
system hangs.
To prevent this, set the `no_hw_access` flag to true immediately after
triggering the reset. This signals other driver components to skip
register accesses while the device is offline.
A memory barrier `smp_mb()` is added to ensure the flag update is
globally visible to all cores before the driver enters the sleep/wait
state.
(cherry picked from commit 7edb503fe4b6d67f47d8bb0dfafb8e699bb0f8a4) |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: mac80211: don't WARN for connections on invalid channels
It's not clear (to me) how exactly syzbot managed to hit this,
but it seems conceivable that e.g. regulatory changed and has
disabled a channel between scanning (channel is checked to be
usable by cfg80211_get_ies_channel_number) and connecting on
the channel later.
With one scenario that isn't covered elsewhere described above,
the warning isn't good, replace it with a (more informative)
error message. |
| In the Linux kernel, the following vulnerability has been resolved:
md: suspend array while updating raid_disks via sysfs
In raid1_reshape(), freeze_array() is called before modifying the r1bio
memory pool (conf->r1bio_pool) and conf->raid_disks, and
unfreeze_array() is called after the update is completed.
However, freeze_array() only waits until nr_sync_pending and
(nr_pending - nr_queued) of all buckets reaches zero. When an I/O error
occurs, nr_queued is increased and the corresponding r1bio is queued to
either retry_list or bio_end_io_list. As a result, freeze_array() may
unblock before these r1bios are released.
This can lead to a situation where conf->raid_disks and the mempool have
already been updated while queued r1bios, allocated with the old
raid_disks value, are later released. Consequently, free_r1bio() may
access memory out of bounds in put_all_bios() and release r1bios of the
wrong size to the new mempool, potentially causing issues with the
mempool as well.
Since only normal I/O might increase nr_queued while an I/O error occurs,
suspending the array avoids this issue.
Note: Updating raid_disks via ioctl SET_ARRAY_INFO already suspends
the array. Therefore, we suspend the array when updating raid_disks
via sysfs to avoid this issue too. |
| Relative Path Traversal, Improper Isolation or Compartmentalization vulnerability in erlang otp erlang/otp (tftp_file modules), erlang otp inets (tftp_file modules), erlang otp tftp (tftp_file modules) allows Relative Path Traversal. This vulnerability is associated with program files lib/tftp/src/tftp_file.erl, src/tftp_file.Erl.
This issue affects otp: from 17.0, from 07b8f441ca711f9812fad9e9115bab3c3aa92f79; otp: from 5.10 before 7.0; otp: from 1.0. |
| No description is available for this CVE. |
| SoftVision webPDF before 10.0.2 is vulnerable to Server-Side Request Forgery (SSRF). The PDF converter function does not check if internal or external resources are requested in the uploaded files and allows for protocols such as http:// and file:///. This allows an attacker to upload an XML or HTML file in the application, which when rendered to a PDF allows for internal port scanning and Local File Inclusion (LFI). |
| Buffer Overflow vulnerability in CDATA FD614GS3-R850 V3.2.7_P161006 (Build.0333.250211) allows an attacker to execute arbitrary code via the node_mac, node_opt, opt_param, and domainblk parameters of the mesh_node_config and domiainblk_config modules |
| An Open Redirect vulnerability in the go-chi/chi >=5.2.2 RedirectSlashes function allows remote attackers to redirect victim users to malicious websites using the legitimate website domain. |
| A user enumeration vulnerability exists in FormaLMS 4.1.18 and below in the password recovery functionality accessible via the /lostpwd endpoint. The application returns different error messages for valid and invalid usernames allowing an unauthenticated attacker to determine which usernames are registered in the system through observable response discrepancy. |
| In RUCKUS Network Director (RND) < 4.5.0.56, the OVA appliance contains hardcoded SSH keys for the postgres user. These keys are identical across all deployments, allowing an attacker with network access to authenticate via SSH without a password. Once authenticated, the attacker can access the PostgreSQL database with superuser privileges, create administrative users for the web interface, and potentially escalate privileges further. |