| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
block: fix memory leak in __blkdev_issue_zero_pages
Move the fatal signal check before bio_alloc() to prevent a memory
leak when BLKDEV_ZERO_KILLABLE is set and a fatal signal is pending.
Previously, the bio was allocated before checking for a fatal signal.
If a signal was pending, the code would break out of the loop without
freeing or chaining the just-allocated bio, causing a memory leak.
This matches the pattern already used in __blkdev_issue_write_zeroes()
where the signal check precedes the allocation. |
| In the Linux kernel, the following vulnerability has been resolved:
ASoC: da7219: Fix an error handling path in da7219_register_dai_clks()
If clk_hw_register() fails, the corresponding clk should not be
unregistered.
To handle errors from loops, clean up partial iterations before doing the
goto. So add a clk_hw_unregister().
Then use a while (--i >= 0) loop in the unwind section. |
| In the Linux kernel, the following vulnerability has been resolved:
selinux: enable use of both GFP_KERNEL and GFP_ATOMIC in convert_context()
The following warning was triggered on a hardware environment:
SELinux: Converting 162 SID table entries...
BUG: sleeping function called from invalid context at
__might_sleep+0x60/0x74 0x0
in_atomic(): 1, irqs_disabled(): 128, non_block: 0, pid: 5943, name: tar
CPU: 7 PID: 5943 Comm: tar Tainted: P O 5.10.0 #1
Call trace:
dump_backtrace+0x0/0x1c8
show_stack+0x18/0x28
dump_stack+0xe8/0x15c
___might_sleep+0x168/0x17c
__might_sleep+0x60/0x74
__kmalloc_track_caller+0xa0/0x7dc
kstrdup+0x54/0xac
convert_context+0x48/0x2e4
sidtab_context_to_sid+0x1c4/0x36c
security_context_to_sid_core+0x168/0x238
security_context_to_sid_default+0x14/0x24
inode_doinit_use_xattr+0x164/0x1e4
inode_doinit_with_dentry+0x1c0/0x488
selinux_d_instantiate+0x20/0x34
security_d_instantiate+0x70/0xbc
d_splice_alias+0x4c/0x3c0
ext4_lookup+0x1d8/0x200 [ext4]
__lookup_slow+0x12c/0x1e4
walk_component+0x100/0x200
path_lookupat+0x88/0x118
filename_lookup+0x98/0x130
user_path_at_empty+0x48/0x60
vfs_statx+0x84/0x140
vfs_fstatat+0x20/0x30
__se_sys_newfstatat+0x30/0x74
__arm64_sys_newfstatat+0x1c/0x2c
el0_svc_common.constprop.0+0x100/0x184
do_el0_svc+0x1c/0x2c
el0_svc+0x20/0x34
el0_sync_handler+0x80/0x17c
el0_sync+0x13c/0x140
SELinux: Context system_u:object_r:pssp_rsyslog_log_t:s0:c0 is
not valid (left unmapped).
It was found that within a critical section of spin_lock_irqsave in
sidtab_context_to_sid(), convert_context() (hooked by
sidtab_convert_params.func) might cause the process to sleep via
allocating memory with GFP_KERNEL, which is problematic.
As Ondrej pointed out [1], convert_context()/sidtab_convert_params.func
has another caller sidtab_convert_tree(), which is okay with GFP_KERNEL.
Therefore, fix this problem by adding a gfp_t argument for
convert_context()/sidtab_convert_params.func and pass GFP_KERNEL/_ATOMIC
properly in individual callers.
[PM: wrap long BUG() output lines, tweak subject line] |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: mt76: mt7921s: fix slab-out-of-bounds access in sdio host
SDIO may need addtional 511 bytes to align bus operation. If the tailroom
of this skb is not big enough, we would access invalid memory region.
For low level operation, increase skb size to keep valid memory access in
SDIO host.
Error message:
[69.951] BUG: KASAN: slab-out-of-bounds in sg_copy_buffer+0xe9/0x1a0
[69.951] Read of size 64 at addr ffff88811c9cf000 by task kworker/u16:7/451
[69.951] CPU: 4 PID: 451 Comm: kworker/u16:7 Tainted: G W OE 6.1.0-rc5 #1
[69.951] Workqueue: kvub300c vub300_cmndwork_thread [vub300]
[69.951] Call Trace:
[69.951] <TASK>
[69.952] dump_stack_lvl+0x49/0x63
[69.952] print_report+0x171/0x4a8
[69.952] kasan_report+0xb4/0x130
[69.952] kasan_check_range+0x149/0x1e0
[69.952] memcpy+0x24/0x70
[69.952] sg_copy_buffer+0xe9/0x1a0
[69.952] sg_copy_to_buffer+0x12/0x20
[69.952] __command_write_data.isra.0+0x23c/0xbf0 [vub300]
[69.952] vub300_cmndwork_thread+0x17f3/0x58b0 [vub300]
[69.952] process_one_work+0x7ee/0x1320
[69.952] worker_thread+0x53c/0x1240
[69.952] kthread+0x2b8/0x370
[69.952] ret_from_fork+0x1f/0x30
[69.952] </TASK>
[69.952] Allocated by task 854:
[69.952] kasan_save_stack+0x26/0x50
[69.952] kasan_set_track+0x25/0x30
[69.952] kasan_save_alloc_info+0x1b/0x30
[69.952] __kasan_kmalloc+0x87/0xa0
[69.952] __kmalloc_node_track_caller+0x63/0x150
[69.952] kmalloc_reserve+0x31/0xd0
[69.952] __alloc_skb+0xfc/0x2b0
[69.952] __mt76_mcu_msg_alloc+0xbf/0x230 [mt76]
[69.952] mt76_mcu_send_and_get_msg+0xab/0x110 [mt76]
[69.952] __mt76_mcu_send_firmware.cold+0x94/0x15d [mt76]
[69.952] mt76_connac_mcu_send_ram_firmware+0x415/0x54d [mt76_connac_lib]
[69.952] mt76_connac2_load_ram.cold+0x118/0x4bc [mt76_connac_lib]
[69.952] mt7921_run_firmware.cold+0x2e9/0x405 [mt7921_common]
[69.952] mt7921s_mcu_init+0x45/0x80 [mt7921s]
[69.953] mt7921_init_work+0xe1/0x2a0 [mt7921_common]
[69.953] process_one_work+0x7ee/0x1320
[69.953] worker_thread+0x53c/0x1240
[69.953] kthread+0x2b8/0x370
[69.953] ret_from_fork+0x1f/0x30
[69.953] The buggy address belongs to the object at ffff88811c9ce800
which belongs to the cache kmalloc-2k of size 2048
[69.953] The buggy address is located 0 bytes to the right of
2048-byte region [ffff88811c9ce800, ffff88811c9cf000)
[69.953] Memory state around the buggy address:
[69.953] ffff88811c9cef00: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
[69.953] ffff88811c9cef80: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
[69.953] >ffff88811c9cf000: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc
[69.953] ^
[69.953] ffff88811c9cf080: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc
[69.953] ffff88811c9cf100: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc |
| In the Linux kernel, the following vulnerability has been resolved:
vdpa_sim: fix possible memory leak in vdpasim_net_init() and vdpasim_blk_init()
Inject fault while probing module, if device_register() fails in
vdpasim_net_init() or vdpasim_blk_init(), but the refcount of kobject is
not decreased to 0, the name allocated in dev_set_name() is leaked.
Fix this by calling put_device(), so that name can be freed in
callback function kobject_cleanup().
(vdpa_sim_net)
unreferenced object 0xffff88807eebc370 (size 16):
comm "modprobe", pid 3848, jiffies 4362982860 (age 18.153s)
hex dump (first 16 bytes):
76 64 70 61 73 69 6d 5f 6e 65 74 00 6b 6b 6b a5 vdpasim_net.kkk.
backtrace:
[<ffffffff8174f19e>] __kmalloc_node_track_caller+0x4e/0x150
[<ffffffff81731d53>] kstrdup+0x33/0x60
[<ffffffff83a5d421>] kobject_set_name_vargs+0x41/0x110
[<ffffffff82d87aab>] dev_set_name+0xab/0xe0
[<ffffffff82d91a23>] device_add+0xe3/0x1a80
[<ffffffffa0270013>] 0xffffffffa0270013
[<ffffffff81001c27>] do_one_initcall+0x87/0x2e0
[<ffffffff813739cb>] do_init_module+0x1ab/0x640
[<ffffffff81379d20>] load_module+0x5d00/0x77f0
[<ffffffff8137bc40>] __do_sys_finit_module+0x110/0x1b0
[<ffffffff83c4d505>] do_syscall_64+0x35/0x80
[<ffffffff83e0006a>] entry_SYSCALL_64_after_hwframe+0x46/0xb0
(vdpa_sim_blk)
unreferenced object 0xffff8881070c1250 (size 16):
comm "modprobe", pid 6844, jiffies 4364069319 (age 17.572s)
hex dump (first 16 bytes):
76 64 70 61 73 69 6d 5f 62 6c 6b 00 6b 6b 6b a5 vdpasim_blk.kkk.
backtrace:
[<ffffffff8174f19e>] __kmalloc_node_track_caller+0x4e/0x150
[<ffffffff81731d53>] kstrdup+0x33/0x60
[<ffffffff83a5d421>] kobject_set_name_vargs+0x41/0x110
[<ffffffff82d87aab>] dev_set_name+0xab/0xe0
[<ffffffff82d91a23>] device_add+0xe3/0x1a80
[<ffffffffa0220013>] 0xffffffffa0220013
[<ffffffff81001c27>] do_one_initcall+0x87/0x2e0
[<ffffffff813739cb>] do_init_module+0x1ab/0x640
[<ffffffff81379d20>] load_module+0x5d00/0x77f0
[<ffffffff8137bc40>] __do_sys_finit_module+0x110/0x1b0
[<ffffffff83c4d505>] do_syscall_64+0x35/0x80
[<ffffffff83e0006a>] entry_SYSCALL_64_after_hwframe+0x46/0xb0 |
| In the Linux kernel, the following vulnerability has been resolved:
soc: qcom: smsm: Fix refcount leak bugs in qcom_smsm_probe()
There are two refcount leak bugs in qcom_smsm_probe():
(1) The 'local_node' is escaped out from for_each_child_of_node() as
the break of iteration, we should call of_node_put() for it in error
path or when it is not used anymore.
(2) The 'node' is escaped out from for_each_available_child_of_node()
as the 'goto', we should call of_node_put() for it in goto target. |
| In the Linux kernel, the following vulnerability has been resolved:
USB: gadget: Fix use-after-free during usb config switch
In the process of switching USB config from rndis to other config,
if the hardware does not support the ->pullup callback, or the
hardware encounters a low probability fault, both of them may cause
the ->pullup callback to fail, which will then cause a system panic
(use after free).
The gadget drivers sometimes need to be unloaded regardless of the
hardware's behavior.
Analysis as follows:
=======================================================================
(1) write /config/usb_gadget/g1/UDC "none"
gether_disconnect+0x2c/0x1f8
rndis_disable+0x4c/0x74
composite_disconnect+0x74/0xb0
configfs_composite_disconnect+0x60/0x7c
usb_gadget_disconnect+0x70/0x124
usb_gadget_unregister_driver+0xc8/0x1d8
gadget_dev_desc_UDC_store+0xec/0x1e4
(2) rm /config/usb_gadget/g1/configs/b.1/f1
rndis_deregister+0x28/0x54
rndis_free+0x44/0x7c
usb_put_function+0x14/0x1c
config_usb_cfg_unlink+0xc4/0xe0
configfs_unlink+0x124/0x1c8
vfs_unlink+0x114/0x1dc
(3) rmdir /config/usb_gadget/g1/functions/rndis.gs4
panic+0x1fc/0x3d0
do_page_fault+0xa8/0x46c
do_mem_abort+0x3c/0xac
el1_sync_handler+0x40/0x78
0xffffff801138f880
rndis_close+0x28/0x34
eth_stop+0x74/0x110
dev_close_many+0x48/0x194
rollback_registered_many+0x118/0x814
unregister_netdev+0x20/0x30
gether_cleanup+0x1c/0x38
rndis_attr_release+0xc/0x14
kref_put+0x74/0xb8
configfs_rmdir+0x314/0x374
If gadget->ops->pullup() return an error, function rndis_close() will be
called, then it will causes a use-after-free problem.
======================================================================= |
| In the Linux kernel, the following vulnerability has been resolved:
io_uring/rw: defer fsnotify calls to task context
We can't call these off the kiocb completion as that might be off
soft/hard irq context. Defer the calls to when we process the
task_work for this request. That avoids valid complaints like:
stack backtrace:
CPU: 1 PID: 0 Comm: swapper/1 Not tainted 6.0.0-rc6-syzkaller-00321-g105a36f3694e #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 08/26/2022
Call Trace:
<IRQ>
__dump_stack lib/dump_stack.c:88 [inline]
dump_stack_lvl+0xcd/0x134 lib/dump_stack.c:106
print_usage_bug kernel/locking/lockdep.c:3961 [inline]
valid_state kernel/locking/lockdep.c:3973 [inline]
mark_lock_irq kernel/locking/lockdep.c:4176 [inline]
mark_lock.part.0.cold+0x18/0xd8 kernel/locking/lockdep.c:4632
mark_lock kernel/locking/lockdep.c:4596 [inline]
mark_usage kernel/locking/lockdep.c:4527 [inline]
__lock_acquire+0x11d9/0x56d0 kernel/locking/lockdep.c:5007
lock_acquire kernel/locking/lockdep.c:5666 [inline]
lock_acquire+0x1ab/0x570 kernel/locking/lockdep.c:5631
__fs_reclaim_acquire mm/page_alloc.c:4674 [inline]
fs_reclaim_acquire+0x115/0x160 mm/page_alloc.c:4688
might_alloc include/linux/sched/mm.h:271 [inline]
slab_pre_alloc_hook mm/slab.h:700 [inline]
slab_alloc mm/slab.c:3278 [inline]
__kmem_cache_alloc_lru mm/slab.c:3471 [inline]
kmem_cache_alloc+0x39/0x520 mm/slab.c:3491
fanotify_alloc_fid_event fs/notify/fanotify/fanotify.c:580 [inline]
fanotify_alloc_event fs/notify/fanotify/fanotify.c:813 [inline]
fanotify_handle_event+0x1130/0x3f40 fs/notify/fanotify/fanotify.c:948
send_to_group fs/notify/fsnotify.c:360 [inline]
fsnotify+0xafb/0x1680 fs/notify/fsnotify.c:570
__fsnotify_parent+0x62f/0xa60 fs/notify/fsnotify.c:230
fsnotify_parent include/linux/fsnotify.h:77 [inline]
fsnotify_file include/linux/fsnotify.h:99 [inline]
fsnotify_access include/linux/fsnotify.h:309 [inline]
__io_complete_rw_common+0x485/0x720 io_uring/rw.c:195
io_complete_rw+0x1a/0x1f0 io_uring/rw.c:228
iomap_dio_complete_work fs/iomap/direct-io.c:144 [inline]
iomap_dio_bio_end_io+0x438/0x5e0 fs/iomap/direct-io.c:178
bio_endio+0x5f9/0x780 block/bio.c:1564
req_bio_endio block/blk-mq.c:695 [inline]
blk_update_request+0x3fc/0x1300 block/blk-mq.c:825
scsi_end_request+0x7a/0x9a0 drivers/scsi/scsi_lib.c:541
scsi_io_completion+0x173/0x1f70 drivers/scsi/scsi_lib.c:971
scsi_complete+0x122/0x3b0 drivers/scsi/scsi_lib.c:1438
blk_complete_reqs+0xad/0xe0 block/blk-mq.c:1022
__do_softirq+0x1d3/0x9c6 kernel/softirq.c:571
invoke_softirq kernel/softirq.c:445 [inline]
__irq_exit_rcu+0x123/0x180 kernel/softirq.c:650
irq_exit_rcu+0x5/0x20 kernel/softirq.c:662
common_interrupt+0xa9/0xc0 arch/x86/kernel/irq.c:240 |
| In the Linux kernel, the following vulnerability has been resolved:
net/ieee802154: don't warn zero-sized raw_sendmsg()
syzbot is hitting skb_assert_len() warning at __dev_queue_xmit() [1],
for PF_IEEE802154 socket's zero-sized raw_sendmsg() request is hitting
__dev_queue_xmit() with skb->len == 0.
Since PF_IEEE802154 socket's zero-sized raw_sendmsg() request was
able to return 0, don't call __dev_queue_xmit() if packet length is 0.
----------
#include <sys/socket.h>
#include <netinet/in.h>
int main(int argc, char *argv[])
{
struct sockaddr_in addr = { .sin_family = AF_INET, .sin_addr.s_addr = htonl(INADDR_LOOPBACK) };
struct iovec iov = { };
struct msghdr hdr = { .msg_name = &addr, .msg_namelen = sizeof(addr), .msg_iov = &iov, .msg_iovlen = 1 };
sendmsg(socket(PF_IEEE802154, SOCK_RAW, 0), &hdr, 0);
return 0;
}
----------
Note that this might be a sign that commit fd1894224407c484 ("bpf: Don't
redirect packets with invalid pkt_len") should be reverted, for
skb->len == 0 was acceptable for at least PF_IEEE802154 socket. |
| In the Linux kernel, the following vulnerability has been resolved:
virtio-crypto: fix memory leak in virtio_crypto_alg_skcipher_close_session()
'vc_ctrl_req' is alloced in virtio_crypto_alg_skcipher_close_session(),
and should be freed in the invalid ctrl_status->status error handling
case. Otherwise there is a memory leak. |
| In the Linux kernel, the following vulnerability has been resolved:
net: ethernet: mtk_eth_soc: fix possible memory leak in mtk_probe()
If mtk_wed_add_hw() has been called, mtk_wed_exit() needs be called
in error path or removing module to free the memory allocated in
mtk_wed_add_hw(). |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: mpi3mr: Fix an issue found by KASAN
Write only correct size (32 instead of 64 bytes). |
| In the Linux kernel, the following vulnerability has been resolved:
PCI/DOE: Fix memory leak with CONFIG_DEBUG_OBJECTS=y
After a pci_doe_task completes, its work_struct needs to be destroyed
to avoid a memory leak with CONFIG_DEBUG_OBJECTS=y. |
| In the Linux kernel, the following vulnerability has been resolved:
mips: bmips: BCM6358: disable RAC flush for TP1
RAC flush causes kernel panics on BCM6358 with EHCI/OHCI when booting from TP1:
[ 3.881739] usb 1-1: new high-speed USB device number 2 using ehci-platform
[ 3.895011] Reserved instruction in kernel code[#1]:
[ 3.900113] CPU: 0 PID: 1 Comm: init Not tainted 5.10.16 #0
[ 3.905829] $ 0 : 00000000 10008700 00000000 77d94060
[ 3.911238] $ 4 : 7fd1f088 00000000 81431cac 81431ca0
[ 3.916641] $ 8 : 00000000 ffffefff 8075cd34 00000000
[ 3.922043] $12 : 806f8d40 f3e812b7 00000000 000d9aaa
[ 3.927446] $16 : 7fd1f068 7fd1f080 7ff559b8 81428470
[ 3.932848] $20 : 00000000 00000000 55590000 77d70000
[ 3.938251] $24 : 00000018 00000010
[ 3.943655] $28 : 81430000 81431e60 81431f28 800157fc
[ 3.949058] Hi : 00000000
[ 3.952013] Lo : 00000000
[ 3.955019] epc : 80015808 setup_sigcontext+0x54/0x24c
[ 3.960464] ra : 800157fc setup_sigcontext+0x48/0x24c
[ 3.965913] Status: 10008703 KERNEL EXL IE
[ 3.970216] Cause : 00800028 (ExcCode 0a)
[ 3.974340] PrId : 0002a010 (Broadcom BMIPS4350)
[ 3.979170] Modules linked in: ohci_platform ohci_hcd fsl_mph_dr_of ehci_platform ehci_fsl ehci_hcd gpio_button_hotplug usbcore nls_base usb_common
[ 3.992907] Process init (pid: 1, threadinfo=(ptrval), task=(ptrval), tls=77e22ec8)
[ 4.000776] Stack : 81431ef4 7fd1f080 81431f28 81428470 7fd1f068 81431edc 7ff559b8 81428470
[ 4.009467] 81431f28 7fd1f080 55590000 77d70000 77d5498c 80015c70 806f0000 8063ae74
[ 4.018149] 08100002 81431f28 0000000a 08100002 81431f28 0000000a 77d6b418 00000003
[ 4.026831] ffffffff 80016414 80080734 81431ecc 81431ecc 00000001 00000000 04000000
[ 4.035512] 77d54874 00000000 00000000 00000000 00000000 00000012 00000002 00000000
[ 4.044196] ...
[ 4.046706] Call Trace:
[ 4.049238] [<80015808>] setup_sigcontext+0x54/0x24c
[ 4.054356] [<80015c70>] setup_frame+0xdc/0x124
[ 4.059015] [<80016414>] do_notify_resume+0x1dc/0x288
[ 4.064207] [<80011b50>] work_notifysig+0x10/0x18
[ 4.069036]
[ 4.070538] Code: 8fc300b4 00001025 26240008 <ac820000> ac830004 3c048063 0c0228aa 24846a00 26240010
[ 4.080686]
[ 4.082517] ---[ end trace 22a8edb41f5f983b ]---
[ 4.087374] Kernel panic - not syncing: Fatal exception
[ 4.092753] Rebooting in 1 seconds..
Because the bootloader (CFE) is not initializing the Read-ahead cache properly
on the second thread (TP1). Since the RAC was not initialized properly, we
should avoid flushing it at the risk of corrupting the instruction stream as
seen in the trace above. |
| In the Linux kernel, the following vulnerability has been resolved:
ping: Fix potentail NULL deref for /proc/net/icmp.
After commit dbca1596bbb0 ("ping: convert to RCU lookups, get rid
of rwlock"), we use RCU for ping sockets, but we should use spinlock
for /proc/net/icmp to avoid a potential NULL deref mentioned in
the previous patch.
Let's go back to using spinlock there.
Note we can convert ping sockets to use hlist instead of hlist_nulls
because we do not use SLAB_TYPESAFE_BY_RCU for ping sockets. |
| In the Linux kernel, the following vulnerability has been resolved:
ionic: remove WARN_ON to prevent panic_on_warn
Remove unnecessary early code development check and the WARN_ON
that it uses. The irq alloc and free paths have long been
cleaned up and this check shouldn't have stuck around so long. |
| In the Linux kernel, the following vulnerability has been resolved:
fs/ntfs3: Fix slab-out-of-bounds read in hdr_delete_de()
Here is a BUG report from syzbot:
BUG: KASAN: slab-out-of-bounds in hdr_delete_de+0xe0/0x150 fs/ntfs3/index.c:806
Read of size 16842960 at addr ffff888079cc0600 by task syz-executor934/3631
Call Trace:
memmove+0x25/0x60 mm/kasan/shadow.c:54
hdr_delete_de+0xe0/0x150 fs/ntfs3/index.c:806
indx_delete_entry+0x74f/0x3670 fs/ntfs3/index.c:2193
ni_remove_name+0x27a/0x980 fs/ntfs3/frecord.c:2910
ntfs_unlink_inode+0x3d4/0x720 fs/ntfs3/inode.c:1712
ntfs_rename+0x41a/0xcb0 fs/ntfs3/namei.c:276
Before using the meta-data in struct INDEX_HDR, we need to
check index header valid or not. Otherwise, the corruptedi
(or malicious) fs image can cause out-of-bounds access which
could make kernel panic. |
| In the Linux kernel, the following vulnerability has been resolved:
SMB3: Add missing locks to protect deferred close file list
cifs_del_deferred_close function has a critical section which modifies
the deferred close file list. We must acquire deferred_lock before
calling cifs_del_deferred_close function. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/msm/dpu: Disallow unallocated resources to be returned
In the event that the topology requests resources that have not been
created by the system (because they are typically not represented in
dpu_mdss_cfg ^1), the resource(s) in global_state (in this case DSC
blocks, until their allocation/assignment is being sanity-checked in
"drm/msm/dpu: Reject topologies for which no DSC blocks are available")
remain NULL but will still be returned out of
dpu_rm_get_assigned_resources, where the caller expects to get an array
containing num_blks valid pointers (but instead gets these NULLs).
To prevent this from happening, where null-pointer dereferences
typically result in a hard-to-debug platform lockup, num_blks shouldn't
increase past NULL blocks and will print an error and break instead.
After all, max_blks represents the static size of the maximum number of
blocks whereas the actual amount varies per platform.
^1: which can happen after a git rebase ended up moving additions to
_dpu_cfg to a different struct which has the same patch context.
Patchwork: https://patchwork.freedesktop.org/patch/517636/ |
| In the Linux kernel, the following vulnerability has been resolved:
net: ipv4: fix one memleak in __inet_del_ifa()
I got the below warning when do fuzzing test:
unregister_netdevice: waiting for bond0 to become free. Usage count = 2
It can be repoduced via:
ip link add bond0 type bond
sysctl -w net.ipv4.conf.bond0.promote_secondaries=1
ip addr add 4.117.174.103/0 scope 0x40 dev bond0
ip addr add 192.168.100.111/255.255.255.254 scope 0 dev bond0
ip addr add 0.0.0.4/0 scope 0x40 secondary dev bond0
ip addr del 4.117.174.103/0 scope 0x40 dev bond0
ip link delete bond0 type bond
In this reproduction test case, an incorrect 'last_prim' is found in
__inet_del_ifa(), as a result, the secondary address(0.0.0.4/0 scope 0x40)
is lost. The memory of the secondary address is leaked and the reference of
in_device and net_device is leaked.
Fix this problem:
Look for 'last_prim' starting at location of the deleted IP and inserting
the promoted IP into the location of 'last_prim'. |