Search Results (16621 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2023-53995 1 Linux 1 Linux Kernel 2025-12-29 7.0 High
In the Linux kernel, the following vulnerability has been resolved: net: ipv4: fix one memleak in __inet_del_ifa() I got the below warning when do fuzzing test: unregister_netdevice: waiting for bond0 to become free. Usage count = 2 It can be repoduced via: ip link add bond0 type bond sysctl -w net.ipv4.conf.bond0.promote_secondaries=1 ip addr add 4.117.174.103/0 scope 0x40 dev bond0 ip addr add 192.168.100.111/255.255.255.254 scope 0 dev bond0 ip addr add 0.0.0.4/0 scope 0x40 secondary dev bond0 ip addr del 4.117.174.103/0 scope 0x40 dev bond0 ip link delete bond0 type bond In this reproduction test case, an incorrect 'last_prim' is found in __inet_del_ifa(), as a result, the secondary address(0.0.0.4/0 scope 0x40) is lost. The memory of the secondary address is leaked and the reference of in_device and net_device is leaked. Fix this problem: Look for 'last_prim' starting at location of the deleted IP and inserting the promoted IP into the location of 'last_prim'.
CVE-2023-53991 1 Linux 1 Linux Kernel 2025-12-29 N/A
In the Linux kernel, the following vulnerability has been resolved: drm/msm/dpu: Disallow unallocated resources to be returned In the event that the topology requests resources that have not been created by the system (because they are typically not represented in dpu_mdss_cfg ^1), the resource(s) in global_state (in this case DSC blocks, until their allocation/assignment is being sanity-checked in "drm/msm/dpu: Reject topologies for which no DSC blocks are available") remain NULL but will still be returned out of dpu_rm_get_assigned_resources, where the caller expects to get an array containing num_blks valid pointers (but instead gets these NULLs). To prevent this from happening, where null-pointer dereferences typically result in a hard-to-debug platform lockup, num_blks shouldn't increase past NULL blocks and will print an error and break instead. After all, max_blks represents the static size of the maximum number of blocks whereas the actual amount varies per platform. ^1: which can happen after a git rebase ended up moving additions to _dpu_cfg to a different struct which has the same patch context. Patchwork: https://patchwork.freedesktop.org/patch/517636/
CVE-2023-53997 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: thermal: of: fix double-free on unregistration Since commit 3d439b1a2ad3 ("thermal/core: Alloc-copy-free the thermal zone parameters structure"), thermal_zone_device_register() allocates a copy of the tzp argument and frees it when unregistering, so thermal_of_zone_register() now ends up leaking its original tzp and double-freeing the tzp copy. Fix this by locating tzp on stack instead.
CVE-2023-54001 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: staging: r8712: Fix memory leak in _r8712_init_xmit_priv() In the above mentioned routine, memory is allocated in several places. If the first succeeds and a later one fails, the routine will leak memory. This patch fixes commit 2865d42c78a9 ("staging: r8712u: Add the new driver to the mainline kernel"). A potential memory leak in r8712_xmit_resource_alloc() is also addressed.
CVE-2023-53999 1 Linux 1 Linux Kernel 2025-12-29 7.0 High
In the Linux kernel, the following vulnerability has been resolved: net/mlx5e: TC, Fix internal port memory leak The flow rule can be splited, and the extra post_act rules are added to post_act table. It's possible to trigger memleak when the rule forwards packets from internal port and over tunnel, in the case that, for example, CT 'new' state offload is allowed. As int_port object is assigned to the flow attribute of post_act rule, and its refcnt is incremented by mlx5e_tc_int_port_get(), but mlx5e_tc_int_port_put() is not called, the refcnt is never decremented, then int_port is never freed. The kmemleak reports the following error: unreferenced object 0xffff888128204b80 (size 64): comm "handler20", pid 50121, jiffies 4296973009 (age 642.932s) hex dump (first 32 bytes): 01 00 00 00 19 00 00 00 03 f0 00 00 04 00 00 00 ................ 98 77 67 41 81 88 ff ff 98 77 67 41 81 88 ff ff .wgA.....wgA.... backtrace: [<00000000e992680d>] kmalloc_trace+0x27/0x120 [<000000009e945a98>] mlx5e_tc_int_port_get+0x3f3/0xe20 [mlx5_core] [<0000000035a537f0>] mlx5e_tc_add_fdb_flow+0x473/0xcf0 [mlx5_core] [<0000000070c2cec6>] __mlx5e_add_fdb_flow+0x7cf/0xe90 [mlx5_core] [<000000005cc84048>] mlx5e_configure_flower+0xd40/0x4c40 [mlx5_core] [<000000004f8a2031>] mlx5e_rep_indr_offload.isra.0+0x10e/0x1c0 [mlx5_core] [<000000007df797dc>] mlx5e_rep_indr_setup_tc_cb+0x90/0x130 [mlx5_core] [<0000000016c15cc3>] tc_setup_cb_add+0x1cf/0x410 [<00000000a63305b4>] fl_hw_replace_filter+0x38f/0x670 [cls_flower] [<000000008bc9e77c>] fl_change+0x1fd5/0x4430 [cls_flower] [<00000000e7f766e4>] tc_new_tfilter+0x867/0x2010 [<00000000e101c0ef>] rtnetlink_rcv_msg+0x6fc/0x9f0 [<00000000e1111d44>] netlink_rcv_skb+0x12c/0x360 [<0000000082dd6c8b>] netlink_unicast+0x438/0x710 [<00000000fc568f70>] netlink_sendmsg+0x794/0xc50 [<0000000016e92590>] sock_sendmsg+0xc5/0x190 So fix this by moving int_port cleanup code to the flow attribute free helper, which is used by all the attribute free cases.
CVE-2023-53986 1 Linux 1 Linux Kernel 2025-12-29 N/A
In the Linux kernel, the following vulnerability has been resolved: mips: bmips: BCM6358: disable RAC flush for TP1 RAC flush causes kernel panics on BCM6358 with EHCI/OHCI when booting from TP1: [ 3.881739] usb 1-1: new high-speed USB device number 2 using ehci-platform [ 3.895011] Reserved instruction in kernel code[#1]: [ 3.900113] CPU: 0 PID: 1 Comm: init Not tainted 5.10.16 #0 [ 3.905829] $ 0 : 00000000 10008700 00000000 77d94060 [ 3.911238] $ 4 : 7fd1f088 00000000 81431cac 81431ca0 [ 3.916641] $ 8 : 00000000 ffffefff 8075cd34 00000000 [ 3.922043] $12 : 806f8d40 f3e812b7 00000000 000d9aaa [ 3.927446] $16 : 7fd1f068 7fd1f080 7ff559b8 81428470 [ 3.932848] $20 : 00000000 00000000 55590000 77d70000 [ 3.938251] $24 : 00000018 00000010 [ 3.943655] $28 : 81430000 81431e60 81431f28 800157fc [ 3.949058] Hi : 00000000 [ 3.952013] Lo : 00000000 [ 3.955019] epc : 80015808 setup_sigcontext+0x54/0x24c [ 3.960464] ra : 800157fc setup_sigcontext+0x48/0x24c [ 3.965913] Status: 10008703 KERNEL EXL IE [ 3.970216] Cause : 00800028 (ExcCode 0a) [ 3.974340] PrId : 0002a010 (Broadcom BMIPS4350) [ 3.979170] Modules linked in: ohci_platform ohci_hcd fsl_mph_dr_of ehci_platform ehci_fsl ehci_hcd gpio_button_hotplug usbcore nls_base usb_common [ 3.992907] Process init (pid: 1, threadinfo=(ptrval), task=(ptrval), tls=77e22ec8) [ 4.000776] Stack : 81431ef4 7fd1f080 81431f28 81428470 7fd1f068 81431edc 7ff559b8 81428470 [ 4.009467] 81431f28 7fd1f080 55590000 77d70000 77d5498c 80015c70 806f0000 8063ae74 [ 4.018149] 08100002 81431f28 0000000a 08100002 81431f28 0000000a 77d6b418 00000003 [ 4.026831] ffffffff 80016414 80080734 81431ecc 81431ecc 00000001 00000000 04000000 [ 4.035512] 77d54874 00000000 00000000 00000000 00000000 00000012 00000002 00000000 [ 4.044196] ... [ 4.046706] Call Trace: [ 4.049238] [<80015808>] setup_sigcontext+0x54/0x24c [ 4.054356] [<80015c70>] setup_frame+0xdc/0x124 [ 4.059015] [<80016414>] do_notify_resume+0x1dc/0x288 [ 4.064207] [<80011b50>] work_notifysig+0x10/0x18 [ 4.069036] [ 4.070538] Code: 8fc300b4 00001025 26240008 <ac820000> ac830004 3c048063 0c0228aa 24846a00 26240010 [ 4.080686] [ 4.082517] ---[ end trace 22a8edb41f5f983b ]--- [ 4.087374] Kernel panic - not syncing: Fatal exception [ 4.092753] Rebooting in 1 seconds.. Because the bootloader (CFE) is not initializing the Read-ahead cache properly on the second thread (TP1). Since the RAC was not initialized properly, we should avoid flushing it at the risk of corrupting the instruction stream as seen in the trace above.
CVE-2023-53993 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: PCI/DOE: Fix memory leak with CONFIG_DEBUG_OBJECTS=y After a pci_doe_task completes, its work_struct needs to be destroyed to avoid a memory leak with CONFIG_DEBUG_OBJECTS=y.
CVE-2023-53987 1 Linux 1 Linux Kernel 2025-12-29 7.0 High
In the Linux kernel, the following vulnerability has been resolved: ping: Fix potentail NULL deref for /proc/net/icmp. After commit dbca1596bbb0 ("ping: convert to RCU lookups, get rid of rwlock"), we use RCU for ping sockets, but we should use spinlock for /proc/net/icmp to avoid a potential NULL deref mentioned in the previous patch. Let's go back to using spinlock there. Note we can convert ping sockets to use hlist instead of hlist_nulls because we do not use SLAB_TYPESAFE_BY_RCU for ping sockets.
CVE-2025-68351 1 Linux 1 Linux Kernel 2025-12-29 N/A
In the Linux kernel, the following vulnerability has been resolved: exfat: fix refcount leak in exfat_find Fix refcount leaks in `exfat_find` related to `exfat_get_dentry_set`. Function `exfat_get_dentry_set` would increase the reference counter of `es->bh` on success. Therefore, `exfat_put_dentry_set` must be called after `exfat_get_dentry_set` to ensure refcount consistency. This patch relocate two checks to avoid possible leaks.
CVE-2025-68348 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: block: fix memory leak in __blkdev_issue_zero_pages Move the fatal signal check before bio_alloc() to prevent a memory leak when BLKDEV_ZERO_KILLABLE is set and a fatal signal is pending. Previously, the bio was allocated before checking for a fatal signal. If a signal was pending, the code would break out of the loop without freeing or chaining the just-allocated bio, causing a memory leak. This matches the pattern already used in __blkdev_issue_write_zeroes() where the signal check precedes the allocation.
CVE-2025-68350 1 Linux 1 Linux Kernel 2025-12-29 N/A
In the Linux kernel, the following vulnerability has been resolved: exfat: fix divide-by-zero in exfat_allocate_bitmap The variable max_ra_count can be 0 in exfat_allocate_bitmap(), which causes a divide-by-zero error in the subsequent modulo operation (i % max_ra_count), leading to a system crash. When max_ra_count is 0, it means that readahead is not used. This patch load the bitmap without readahead.
CVE-2025-68356 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: gfs2: Prevent recursive memory reclaim Function new_inode() returns a new inode with inode->i_mapping->gfp_mask set to GFP_HIGHUSER_MOVABLE. This value includes the __GFP_FS flag, so allocations in that address space can recurse into filesystem memory reclaim. We don't want that to happen because it can consume a significant amount of stack memory. Worse than that is that it can also deadlock: for example, in several places, gfs2_unstuff_dinode() is called inside filesystem transactions. This calls filemap_grab_folio(), which can allocate a new folio, which can trigger memory reclaim. If memory reclaim recurses into the filesystem and starts another transaction, a deadlock will ensue. To fix these kinds of problems, prevent memory reclaim from recursing into filesystem code by making sure that the gfp_mask of inode address spaces doesn't include __GFP_FS. The "meta" and resource group address spaces were already using GFP_NOFS as their gfp_mask (which doesn't include __GFP_FS). The default value of GFP_HIGHUSER_MOVABLE is less restrictive than GFP_NOFS, though. To avoid being overly limiting, use the default value and only knock off the __GFP_FS flag. I'm not sure if this will actually make a difference, but it also shouldn't hurt. This patch is loosely based on commit ad22c7a043c2 ("xfs: prevent stack overflows from page cache allocation"). Fixes xfstest generic/273.
CVE-2025-68355 1 Linux 1 Linux Kernel 2025-12-29 N/A
In the Linux kernel, the following vulnerability has been resolved: bpf: Fix exclusive map memory leak When excl_prog_hash is 0 and excl_prog_hash_size is non-zero, the map also needs to be freed. Otherwise, the map memory will not be reclaimed, just like the memory leak problem reported by syzbot [1]. syzbot reported: BUG: memory leak backtrace (crc 7b9fb9b4): map_create+0x322/0x11e0 kernel/bpf/syscall.c:1512 __sys_bpf+0x3556/0x3610 kernel/bpf/syscall.c:6131
CVE-2025-68358 1 Linux 1 Linux Kernel 2025-12-29 N/A
In the Linux kernel, the following vulnerability has been resolved: btrfs: fix racy bitfield write in btrfs_clear_space_info_full() From the memory-barriers.txt document regarding memory barrier ordering guarantees: (*) These guarantees do not apply to bitfields, because compilers often generate code to modify these using non-atomic read-modify-write sequences. Do not attempt to use bitfields to synchronize parallel algorithms. (*) Even in cases where bitfields are protected by locks, all fields in a given bitfield must be protected by one lock. If two fields in a given bitfield are protected by different locks, the compiler's non-atomic read-modify-write sequences can cause an update to one field to corrupt the value of an adjacent field. btrfs_space_info has a bitfield sharing an underlying word consisting of the fields full, chunk_alloc, and flush: struct btrfs_space_info { struct btrfs_fs_info * fs_info; /* 0 8 */ struct btrfs_space_info * parent; /* 8 8 */ ... int clamp; /* 172 4 */ unsigned int full:1; /* 176: 0 4 */ unsigned int chunk_alloc:1; /* 176: 1 4 */ unsigned int flush:1; /* 176: 2 4 */ ... Therefore, to be safe from parallel read-modify-writes losing a write to one of the bitfield members protected by a lock, all writes to all the bitfields must use the lock. They almost universally do, except for btrfs_clear_space_info_full() which iterates over the space_infos and writes out found->full = 0 without a lock. Imagine that we have one thread completing a transaction in which we finished deleting a block_group and are thus calling btrfs_clear_space_info_full() while simultaneously the data reclaim ticket infrastructure is running do_async_reclaim_data_space(): T1 T2 btrfs_commit_transaction btrfs_clear_space_info_full data_sinfo->full = 0 READ: full:0, chunk_alloc:0, flush:1 do_async_reclaim_data_space(data_sinfo) spin_lock(&space_info->lock); if(list_empty(tickets)) space_info->flush = 0; READ: full: 0, chunk_alloc:0, flush:1 MOD/WRITE: full: 0, chunk_alloc:0, flush:0 spin_unlock(&space_info->lock); return; MOD/WRITE: full:0, chunk_alloc:0, flush:1 and now data_sinfo->flush is 1 but the reclaim worker has exited. This breaks the invariant that flush is 0 iff there is no work queued or running. Once this invariant is violated, future allocations that go into __reserve_bytes() will add tickets to space_info->tickets but will see space_info->flush is set to 1 and not queue the work. After this, they will block forever on the resulting ticket, as it is now impossible to kick the worker again. I also confirmed by looking at the assembly of the affected kernel that it is doing RMW operations. For example, to set the flush (3rd) bit to 0, the assembly is: andb $0xfb,0x60(%rbx) and similarly for setting the full (1st) bit to 0: andb $0xfe,-0x20(%rax) So I think this is really a bug on practical systems. I have observed a number of systems in this exact state, but am currently unable to reproduce it. Rather than leaving this footgun lying around for the future, take advantage of the fact that there is room in the struct anyway, and that it is already quite large and simply change the three bitfield members to bools. This avoids writes to space_info->full having any effect on ---truncated---
CVE-2023-54039 1 Linux 1 Linux Kernel 2025-12-29 7.0 High
In the Linux kernel, the following vulnerability has been resolved: can: j1939: j1939_tp_tx_dat_new(): fix out-of-bounds memory access In the j1939_tp_tx_dat_new() function, an out-of-bounds memory access could occur during the memcpy() operation if the size of skb->cb is larger than the size of struct j1939_sk_buff_cb. This is because the memcpy() operation uses the size of skb->cb, leading to a read beyond the struct j1939_sk_buff_cb. Updated the memcpy() operation to use the size of struct j1939_sk_buff_cb instead of the size of skb->cb. This ensures that the memcpy() operation only reads the memory within the bounds of struct j1939_sk_buff_cb, preventing out-of-bounds memory access. Additionally, add a BUILD_BUG_ON() to check that the size of skb->cb is greater than or equal to the size of struct j1939_sk_buff_cb. This ensures that the skb->cb buffer is large enough to hold the j1939_sk_buff_cb structure. [mkl: rephrase commit message]
CVE-2023-54040 1 Linux 1 Linux Kernel 2025-12-29 7.0 High
In the Linux kernel, the following vulnerability has been resolved: ice: fix wrong fallback logic for FDIR When adding a FDIR filter, if ice_vc_fdir_set_irq_ctx returns failure, the inserted fdir entry will not be removed and if ice_vc_fdir_write_fltr returns failure, the fdir context info for irq handler will not be cleared which may lead to inconsistent or memory leak issue. This patch refines failure cases to resolve this issue.
CVE-2023-54037 1 Linux 1 Linux Kernel 2025-12-29 7.0 High
In the Linux kernel, the following vulnerability has been resolved: ice: prevent NULL pointer deref during reload Calling ethtool during reload can lead to call trace, because VSI isn't configured for some time, but netdev is alive. To fix it add rtnl lock for VSI deconfig and config. Set ::num_q_vectors to 0 after freeing and add a check for ::tx/rx_rings in ring related ethtool ops. Add proper unroll of filters in ice_start_eth(). Reproduction: $watch -n 0.1 -d 'ethtool -g enp24s0f0np0' $devlink dev reload pci/0000:18:00.0 action driver_reinit Call trace before fix: [66303.926205] BUG: kernel NULL pointer dereference, address: 0000000000000000 [66303.926259] #PF: supervisor read access in kernel mode [66303.926286] #PF: error_code(0x0000) - not-present page [66303.926311] PGD 0 P4D 0 [66303.926332] Oops: 0000 [#1] PREEMPT SMP PTI [66303.926358] CPU: 4 PID: 933821 Comm: ethtool Kdump: loaded Tainted: G OE 6.4.0-rc5+ #1 [66303.926400] Hardware name: Intel Corporation S2600WFT/S2600WFT, BIOS SE5C620.86B.00.01.0014.070920180847 07/09/2018 [66303.926446] RIP: 0010:ice_get_ringparam+0x22/0x50 [ice] [66303.926649] Code: 90 90 90 90 90 90 90 90 f3 0f 1e fa 0f 1f 44 00 00 48 8b 87 c0 09 00 00 c7 46 04 e0 1f 00 00 c7 46 10 e0 1f 00 00 48 8b 50 20 <48> 8b 12 0f b7 52 3a 89 56 14 48 8b 40 28 48 8b 00 0f b7 40 58 48 [66303.926722] RSP: 0018:ffffad40472f39c8 EFLAGS: 00010246 [66303.926749] RAX: ffff98a8ada05828 RBX: ffff98a8c46dd060 RCX: ffffad40472f3b48 [66303.926781] RDX: 0000000000000000 RSI: ffff98a8c46dd068 RDI: ffff98a8b23c4000 [66303.926811] RBP: ffffad40472f3b48 R08: 00000000000337b0 R09: 0000000000000000 [66303.926843] R10: 0000000000000001 R11: 0000000000000100 R12: ffff98a8b23c4000 [66303.926874] R13: ffff98a8c46dd060 R14: 000000000000000f R15: ffffad40472f3a50 [66303.926906] FS: 00007f6397966740(0000) GS:ffff98b390900000(0000) knlGS:0000000000000000 [66303.926941] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [66303.926967] CR2: 0000000000000000 CR3: 000000011ac20002 CR4: 00000000007706e0 [66303.926999] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [66303.927029] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [66303.927060] PKRU: 55555554 [66303.927075] Call Trace: [66303.927094] <TASK> [66303.927111] ? __die+0x23/0x70 [66303.927140] ? page_fault_oops+0x171/0x4e0 [66303.927176] ? exc_page_fault+0x7f/0x180 [66303.927209] ? asm_exc_page_fault+0x26/0x30 [66303.927244] ? ice_get_ringparam+0x22/0x50 [ice] [66303.927433] rings_prepare_data+0x62/0x80 [66303.927469] ethnl_default_doit+0xe2/0x350 [66303.927501] genl_family_rcv_msg_doit.isra.0+0xe3/0x140 [66303.927538] genl_rcv_msg+0x1b1/0x2c0 [66303.927561] ? __pfx_ethnl_default_doit+0x10/0x10 [66303.927590] ? __pfx_genl_rcv_msg+0x10/0x10 [66303.927615] netlink_rcv_skb+0x58/0x110 [66303.927644] genl_rcv+0x28/0x40 [66303.927665] netlink_unicast+0x19e/0x290 [66303.927691] netlink_sendmsg+0x254/0x4d0 [66303.927717] sock_sendmsg+0x93/0xa0 [66303.927743] __sys_sendto+0x126/0x170 [66303.927780] __x64_sys_sendto+0x24/0x30 [66303.928593] do_syscall_64+0x5d/0x90 [66303.929370] ? __count_memcg_events+0x60/0xa0 [66303.930146] ? count_memcg_events.constprop.0+0x1a/0x30 [66303.930920] ? handle_mm_fault+0x9e/0x350 [66303.931688] ? do_user_addr_fault+0x258/0x740 [66303.932452] ? exc_page_fault+0x7f/0x180 [66303.933193] entry_SYSCALL_64_after_hwframe+0x72/0xdc
CVE-2023-54036 1 Linux 1 Linux Kernel 2025-12-29 7.0 High
In the Linux kernel, the following vulnerability has been resolved: wifi: rtl8xxxu: Fix memory leaks with RTL8723BU, RTL8192EU The wifi + bluetooth combo chip RTL8723BU can leak memory (especially?) when it's connected to a bluetooth audio device. The busy bluetooth traffic generates lots of C2H (card to host) messages, which are not freed correctly. To fix this, move the dev_kfree_skb() call in rtl8xxxu_c2hcmd_callback() inside the loop where skb_dequeue() is called. The RTL8192EU leaks memory because the C2H messages are added to the queue and left there forever. (This was fine in the past because it probably wasn't sending any C2H messages until commit e542e66b7c2e ("wifi: rtl8xxxu: gen2: Turn on the rate control"). Since that commit it sends a C2H message when the TX rate changes.) To fix this, delete the check for rf_paths > 1 and the goto. Let the function process the C2H messages from RTL8192EU like the ones from the other chips. Theoretically the RTL8188FU could also leak like RTL8723BU, but it most likely doesn't send C2H messages frequently enough. This change was tested with RTL8723BU by Erhard F. I tested it with RTL8188FU and RTL8192EU.
CVE-2023-54038 1 Linux 1 Linux Kernel 2025-12-29 7.0 High
In the Linux kernel, the following vulnerability has been resolved: Bluetooth: hci_conn: return ERR_PTR instead of NULL when there is no link hci_connect_sco currently returns NULL when there is no link (i.e. when hci_conn_link() returns NULL). sco_connect() expects an ERR_PTR in case of any error (see line 266 in sco.c). Thus, hcon set as NULL passes through to sco_conn_add(), which tries to get hcon->hdev, resulting in dereferencing a NULL pointer as reported by syzkaller. The same issue exists for iso_connect_cis() calling hci_connect_cis(). Thus, make hci_connect_sco() and hci_connect_cis() return ERR_PTR instead of NULL.
CVE-2023-54042 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: powerpc/64s: Fix VAS mm use after free The refcount on mm is dropped before the coprocessor is detached.