Search

Search Results (328263 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2025-71083 1 Linux 1 Linux Kernel 2026-01-14 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: drm/ttm: Avoid NULL pointer deref for evicted BOs It is possible for a BO to exist that is not currently associated with a resource, e.g. because it has been evicted. When devcoredump tries to read the contents of all BOs for dumping, we need to expect this as well -- in this case, ENODATA is recorded instead of the buffer contents.
CVE-2025-71071 1 Linux 1 Linux Kernel 2026-01-14 N/A
In the Linux kernel, the following vulnerability has been resolved: iommu/mediatek: fix use-after-free on probe deferral The driver is dropping the references taken to the larb devices during probe after successful lookup as well as on errors. This can potentially lead to a use-after-free in case a larb device has not yet been bound to its driver so that the iommu driver probe defers. Fix this by keeping the references as expected while the iommu driver is bound.
CVE-2025-71068 1 Linux 1 Linux Kernel 2026-01-14 7.0 High
In the Linux kernel, the following vulnerability has been resolved: svcrdma: bound check rq_pages index in inline path svc_rdma_copy_inline_range indexed rqstp->rq_pages[rc_curpage] without verifying rc_curpage stays within the allocated page array. Add guards before the first use and after advancing to a new page.
CVE-2025-71075 1 Linux 1 Linux Kernel 2026-01-14 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: scsi: aic94xx: fix use-after-free in device removal path The asd_pci_remove() function fails to synchronize with pending tasklets before freeing the asd_ha structure, leading to a potential use-after-free vulnerability. When a device removal is triggered (via hot-unplug or module unload), race condition can occur. The fix adds tasklet_kill() before freeing the asd_ha structure, ensuring all scheduled tasklets complete before cleanup proceeds.
CVE-2025-71076 1 Linux 1 Linux Kernel 2026-01-14 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: drm/xe/oa: Limit num_syncs to prevent oversized allocations The OA open parameters did not validate num_syncs, allowing userspace to pass arbitrarily large values, potentially leading to excessive allocations. Add check to ensure that num_syncs does not exceed DRM_XE_MAX_SYNCS, returning -EINVAL when the limit is violated. v2: use XE_IOCTL_DBG() and drop duplicated check. (Ashutosh) (cherry picked from commit e057b2d2b8d815df3858a87dffafa2af37e5945b)
CVE-2025-71077 1 Linux 1 Linux Kernel 2026-01-14 7.0 High
In the Linux kernel, the following vulnerability has been resolved: tpm: Cap the number of PCR banks tpm2_get_pcr_allocation() does not cap any upper limit for the number of banks. Cap the limit to eight banks so that out of bounds values coming from external I/O cause on only limited harm.
CVE-2025-71082 1 Linux 1 Linux Kernel 2026-01-14 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: Bluetooth: btusb: revert use of devm_kzalloc in btusb This reverts commit 98921dbd00c4e ("Bluetooth: Use devm_kzalloc in btusb.c file"). In btusb_probe(), we use devm_kzalloc() to allocate the btusb data. This ties the lifetime of all the btusb data to the binding of a driver to one interface, INTF. In a driver that binds to other interfaces, ISOC and DIAG, this is an accident waiting to happen. The issue is revealed in btusb_disconnect(), where calling usb_driver_release_interface(&btusb_driver, data->intf) will have devm free the data that is also being used by the other interfaces of the driver that may not be released yet. To fix this, revert the use of devm and go back to freeing memory explicitly.
CVE-2025-71081 1 Linux 1 Linux Kernel 2026-01-14 N/A
In the Linux kernel, the following vulnerability has been resolved: ASoC: stm32: sai: fix OF node leak on probe The reference taken to the sync provider OF node when probing the platform device is currently only dropped if the set_sync() callback fails during DAI probe. Make sure to drop the reference on platform probe failures (e.g. probe deferral) and on driver unbind. This also avoids a potential use-after-free in case the DAI is ever reprobed without first rebinding the platform driver.
CVE-2025-71086 1 Linux 1 Linux Kernel 2026-01-14 N/A
In the Linux kernel, the following vulnerability has been resolved: net: rose: fix invalid array index in rose_kill_by_device() rose_kill_by_device() collects sockets into a local array[] and then iterates over them to disconnect sockets bound to a device being brought down. The loop mistakenly indexes array[cnt] instead of array[i]. For cnt < ARRAY_SIZE(array), this reads an uninitialized entry; for cnt == ARRAY_SIZE(array), it is an out-of-bounds read. Either case can lead to an invalid socket pointer dereference and also leaks references taken via sock_hold(). Fix the index to use i.
CVE-2025-71092 1 Linux 1 Linux Kernel 2026-01-14 N/A
In the Linux kernel, the following vulnerability has been resolved: RDMA/bnxt_re: Fix OOB write in bnxt_re_copy_err_stats() Commit ef56081d1864 ("RDMA/bnxt_re: RoCE related hardware counters update") added three new counters and placed them after BNXT_RE_OUT_OF_SEQ_ERR. BNXT_RE_OUT_OF_SEQ_ERR acts as a boundary marker for allocating hardware statistics with different num_counters values on chip_gen_p5_p7 devices. As a result, BNXT_RE_NUM_STD_COUNTERS are used when allocating hw_stats, which leads to an out-of-bounds write in bnxt_re_copy_err_stats(). The counters BNXT_RE_REQ_CQE_ERROR, BNXT_RE_RESP_CQE_ERROR, and BNXT_RE_RESP_REMOTE_ACCESS_ERRS are applicable to generic hardware, not only p5/p7 devices. Fix this by moving these counters before BNXT_RE_OUT_OF_SEQ_ERR so they are included in the generic counter set.
CVE-2025-71100 1 Linux 1 Linux Kernel 2026-01-14 7.0 High
In the Linux kernel, the following vulnerability has been resolved: wifi: rtlwifi: 8192cu: fix tid out of range in rtl92cu_tx_fill_desc() TID getting from ieee80211_get_tid() might be out of range of array size of sta_entry->tids[], so check TID is less than MAX_TID_COUNT. Othwerwise, UBSAN warn: UBSAN: array-index-out-of-bounds in drivers/net/wireless/realtek/rtlwifi/rtl8192cu/trx.c:514:30 index 10 is out of range for type 'rtl_tid_data [9]'
CVE-2025-12548 1 Redhat 1 Openshift Devspaces 2026-01-14 9 Critical
A flaw was found in Eclipse Che che-machine-exec. This vulnerability allows unauthenticated remote arbitrary command execution and secret exfiltration (SSH keys, tokens, etc.) from other users' Developer Workspace containers, via an unauthenticated JSON-RPC / websocket API exposed on TCP port 3333.
CVE-2025-68820 1 Linux 1 Linux Kernel 2026-01-14 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ext4: xattr: fix null pointer deref in ext4_raw_inode() If ext4_get_inode_loc() fails (e.g. if it returns -EFSCORRUPTED), iloc.bh will remain set to NULL. Since ext4_xattr_inode_dec_ref_all() lacks error checking, this will lead to a null pointer dereference in ext4_raw_inode(), called right after ext4_get_inode_loc(). Found by Linux Verification Center (linuxtesting.org) with SVACE.
CVE-2025-68783 1 Linux 1 Linux Kernel 2026-01-14 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ALSA: usb-mixer: us16x08: validate meter packet indices get_meter_levels_from_urb() parses the 64-byte meter packets sent by the device and fills the per-channel arrays meter_level[], comp_level[] and master_level[] in struct snd_us16x08_meter_store. Currently the function derives the channel index directly from the meter packet (MUB2(meter_urb, s) - 1) and uses it to index those arrays without validating the range. If the packet contains a negative or out-of-range channel number, the driver may write past the end of these arrays. Introduce a local channel variable and validate it before updating the arrays. We reject negative indices, limit meter_level[] and comp_level[] to SND_US16X08_MAX_CHANNELS, and guard master_level[] updates with ARRAY_SIZE(master_level).
CVE-2025-68796 1 Linux 1 Linux Kernel 2026-01-14 N/A
In the Linux kernel, the following vulnerability has been resolved: f2fs: fix to avoid updating zero-sized extent in extent cache As syzbot reported: F2FS-fs (loop0): __update_extent_tree_range: extent len is zero, type: 0, extent [0, 0, 0], age [0, 0] ------------[ cut here ]------------ kernel BUG at fs/f2fs/extent_cache.c:678! Oops: invalid opcode: 0000 [#1] SMP KASAN NOPTI CPU: 0 UID: 0 PID: 5336 Comm: syz.0.0 Not tainted syzkaller #0 PREEMPT(full) Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-debian-1.16.3-2~bpo12+1 04/01/2014 RIP: 0010:__update_extent_tree_range+0x13bc/0x1500 fs/f2fs/extent_cache.c:678 Call Trace: <TASK> f2fs_update_read_extent_cache_range+0x192/0x3e0 fs/f2fs/extent_cache.c:1085 f2fs_do_zero_range fs/f2fs/file.c:1657 [inline] f2fs_zero_range+0x10c1/0x1580 fs/f2fs/file.c:1737 f2fs_fallocate+0x583/0x990 fs/f2fs/file.c:2030 vfs_fallocate+0x669/0x7e0 fs/open.c:342 ioctl_preallocate fs/ioctl.c:289 [inline] file_ioctl+0x611/0x780 fs/ioctl.c:-1 do_vfs_ioctl+0xb33/0x1430 fs/ioctl.c:576 __do_sys_ioctl fs/ioctl.c:595 [inline] __se_sys_ioctl+0x82/0x170 fs/ioctl.c:583 do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline] do_syscall_64+0xfa/0x3b0 arch/x86/entry/syscall_64.c:94 entry_SYSCALL_64_after_hwframe+0x77/0x7f RIP: 0033:0x7f07bc58eec9 In error path of f2fs_zero_range(), it may add a zero-sized extent into extent cache, it should be avoided.
CVE-2025-71069 1 Linux 1 Linux Kernel 2026-01-14 N/A
In the Linux kernel, the following vulnerability has been resolved: f2fs: invalidate dentry cache on failed whiteout creation F2FS can mount filesystems with corrupted directory depth values that get runtime-clamped to MAX_DIR_HASH_DEPTH. When RENAME_WHITEOUT operations are performed on such directories, f2fs_rename performs directory modifications (updating target entry and deleting source entry) before attempting to add the whiteout entry via f2fs_add_link. If f2fs_add_link fails due to the corrupted directory structure, the function returns an error to VFS, but the partial directory modifications have already been committed to disk. VFS assumes the entire rename operation failed and does not update the dentry cache, leaving stale mappings. In the error path, VFS does not call d_move() to update the dentry cache. This results in new_dentry still pointing to the old inode (new_inode) which has already had its i_nlink decremented to zero. The stale cache causes subsequent operations to incorrectly reference the freed inode. This causes subsequent operations to use cached dentry information that no longer matches the on-disk state. When a second rename targets the same entry, VFS attempts to decrement i_nlink on the stale inode, which may already have i_nlink=0, triggering a WARNING in drop_nlink(). Example sequence: 1. First rename (RENAME_WHITEOUT): file2 → file1 - f2fs updates file1 entry on disk (points to inode 8) - f2fs deletes file2 entry on disk - f2fs_add_link(whiteout) fails (corrupted directory) - Returns error to VFS - VFS does not call d_move() due to error - VFS cache still has: file1 → inode 7 (stale!) - inode 7 has i_nlink=0 (already decremented) 2. Second rename: file3 → file1 - VFS uses stale cache: file1 → inode 7 - Tries to drop_nlink on inode 7 (i_nlink already 0) - WARNING in drop_nlink() Fix this by explicitly invalidating old_dentry and new_dentry when f2fs_add_link fails during whiteout creation. This forces VFS to refresh from disk on subsequent operations, ensuring cache consistency even when the rename partially succeeds. Reproducer: 1. Mount F2FS image with corrupted i_current_depth 2. renameat2(file2, file1, RENAME_WHITEOUT) 3. renameat2(file3, file1, 0) 4. System triggers WARNING in drop_nlink()
CVE-2025-71072 1 Linux 1 Linux Kernel 2026-01-14 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: shmem: fix recovery on rename failures maple_tree insertions can fail if we are seriously short on memory; simple_offset_rename() does not recover well if it runs into that. The same goes for simple_offset_rename_exchange(). Moreover, shmem_whiteout() expects that if it succeeds, the caller will progress to d_move(), i.e. that shmem_rename2() won't fail past the successful call of shmem_whiteout(). Not hard to fix, fortunately - mtree_store() can't fail if the index we are trying to store into is already present in the tree as a singleton. For simple_offset_rename_exchange() that's enough - we just need to be careful about the order of operations. For simple_offset_rename() solution is to preinsert the target into the tree for new_dir; the rest can be done without any potentially failing operations. That preinsertion has to be done in shmem_rename2() rather than in simple_offset_rename() itself - otherwise we'd need to deal with the possibility of failure after successful shmem_whiteout().
CVE-2025-71078 1 Linux 1 Linux Kernel 2026-01-14 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: powerpc/64s/slb: Fix SLB multihit issue during SLB preload On systems using the hash MMU, there is a software SLB preload cache that mirrors the entries loaded into the hardware SLB buffer. This preload cache is subject to periodic eviction — typically after every 256 context switches — to remove old entry. To optimize performance, the kernel skips switch_mmu_context() in switch_mm_irqs_off() when the prev and next mm_struct are the same. However, on hash MMU systems, this can lead to inconsistencies between the hardware SLB and the software preload cache. If an SLB entry for a process is evicted from the software cache on one CPU, and the same process later runs on another CPU without executing switch_mmu_context(), the hardware SLB may retain stale entries. If the kernel then attempts to reload that entry, it can trigger an SLB multi-hit error. The following timeline shows how stale SLB entries are created and can cause a multi-hit error when a process moves between CPUs without a MMU context switch. CPU 0 CPU 1 ----- ----- Process P exec swapper/1 load_elf_binary begin_new_exc activate_mm switch_mm_irqs_off switch_mmu_context switch_slb /* * This invalidates all * the entries in the HW * and setup the new HW * SLB entries as per the * preload cache. */ context_switch sched_migrate_task migrates process P to cpu-1 Process swapper/0 context switch (to process P) (uses mm_struct of Process P) switch_mm_irqs_off() switch_slb load_slb++ /* * load_slb becomes 0 here * and we evict an entry from * the preload cache with * preload_age(). We still * keep HW SLB and preload * cache in sync, that is * because all HW SLB entries * anyways gets evicted in * switch_slb during SLBIA. * We then only add those * entries back in HW SLB, * which are currently * present in preload_cache * (after eviction). */ load_elf_binary continues... setup_new_exec() slb_setup_new_exec() sched_switch event sched_migrate_task migrates process P to cpu-0 context_switch from swapper/0 to Process P switch_mm_irqs_off() /* * Since both prev and next mm struct are same we don't call * switch_mmu_context(). This will cause the HW SLB and SW preload * cache to go out of sync in preload_new_slb_context. Because there * was an SLB entry which was evicted from both HW and preload cache * on cpu-1. Now later in preload_new_slb_context(), when we will try * to add the same preload entry again, we will add this to the SW * preload cache and then will add it to the HW SLB. Since on cpu-0 * this entry was never invalidated, hence adding this entry to the HW * SLB will cause a SLB multi-hit error. */ load_elf_binary cont ---truncated---
CVE-2025-71080 1 Linux 1 Linux Kernel 2026-01-14 7.0 High
In the Linux kernel, the following vulnerability has been resolved: ipv6: fix a BUG in rt6_get_pcpu_route() under PREEMPT_RT On PREEMPT_RT kernels, after rt6_get_pcpu_route() returns NULL, the current task can be preempted. Another task running on the same CPU may then execute rt6_make_pcpu_route() and successfully install a pcpu_rt entry. When the first task resumes execution, its cmpxchg() in rt6_make_pcpu_route() will fail because rt6i_pcpu is no longer NULL, triggering the BUG_ON(prev). It's easy to reproduce it by adding mdelay() after rt6_get_pcpu_route(). Using preempt_disable/enable is not appropriate here because ip6_rt_pcpu_alloc() may sleep. Fix this by handling the cmpxchg() failure gracefully on PREEMPT_RT: free our allocation and return the existing pcpu_rt installed by another task. The BUG_ON is replaced by WARN_ON_ONCE for non-PREEMPT_RT kernels where such races should not occur.
CVE-2025-71099 1 Linux 1 Linux Kernel 2026-01-14 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: drm/xe/oa: Fix potential UAF in xe_oa_add_config_ioctl() In xe_oa_add_config_ioctl(), we accessed oa_config->id after dropping metrics_lock. Since this lock protects the lifetime of oa_config, an attacker could guess the id and call xe_oa_remove_config_ioctl() with perfect timing, freeing oa_config before we dereference it, leading to a potential use-after-free. Fix this by caching the id in a local variable while holding the lock. v2: (Matt A) - Dropped mutex_unlock(&oa->metrics_lock) ordering change from xe_oa_remove_config_ioctl() (cherry picked from commit 28aeaed130e8e587fd1b73b6d66ca41ccc5a1a31)