Search Results (16709 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2023-54316 1 Linux 1 Linux Kernel 2025-12-31 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: refscale: Fix uninitalized use of wait_queue_head_t Running the refscale test occasionally crashes the kernel with the following error: [ 8569.952896] BUG: unable to handle page fault for address: ffffffffffffffe8 [ 8569.952900] #PF: supervisor read access in kernel mode [ 8569.952902] #PF: error_code(0x0000) - not-present page [ 8569.952904] PGD c4b048067 P4D c4b049067 PUD c4b04b067 PMD 0 [ 8569.952910] Oops: 0000 [#1] PREEMPT_RT SMP NOPTI [ 8569.952916] Hardware name: Dell Inc. PowerEdge R750/0WMWCR, BIOS 1.2.4 05/28/2021 [ 8569.952917] RIP: 0010:prepare_to_wait_event+0x101/0x190 : [ 8569.952940] Call Trace: [ 8569.952941] <TASK> [ 8569.952944] ref_scale_reader+0x380/0x4a0 [refscale] [ 8569.952959] kthread+0x10e/0x130 [ 8569.952966] ret_from_fork+0x1f/0x30 [ 8569.952973] </TASK> The likely cause is that init_waitqueue_head() is called after the call to the torture_create_kthread() function that creates the ref_scale_reader kthread. Although this init_waitqueue_head() call will very likely complete before this kthread is created and starts running, it is possible that the calling kthread will be delayed between the calls to torture_create_kthread() and init_waitqueue_head(). In this case, the new kthread will use the waitqueue head before it is properly initialized, which is not good for the kernel's health and well-being. The above crash happened here: static inline void __add_wait_queue(...) { : if (!(wq->flags & WQ_FLAG_PRIORITY)) <=== Crash here The offset of flags from list_head entry in wait_queue_entry is -0x18. If reader_tasks[i].wq.head.next is NULL as allocated reader_task structure is zero initialized, the instruction will try to access address 0xffffffffffffffe8, which is exactly the fault address listed above. This commit therefore invokes init_waitqueue_head() before creating the kthread.
CVE-2023-54317 1 Linux 1 Linux Kernel 2025-12-31 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: dm flakey: don't corrupt the zero page When we need to zero some range on a block device, the function __blkdev_issue_zero_pages submits a write bio with the bio vector pointing to the zero page. If we use dm-flakey with corrupt bio writes option, it will corrupt the content of the zero page which results in crashes of various userspace programs. Glibc assumes that memory returned by mmap is zeroed and it uses it for calloc implementation; if the newly mapped memory is not zeroed, calloc will return non-zeroed memory. Fix this bug by testing if the page is equal to ZERO_PAGE(0) and avoiding the corruption in this case.
CVE-2023-54318 1 Linux 1 Linux Kernel 2025-12-31 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: net/smc: use smc_lgr_list.lock to protect smc_lgr_list.list iterate in smcr_port_add While doing smcr_port_add, there maybe linkgroup add into or delete from smc_lgr_list.list at the same time, which may result kernel crash. So, use smc_lgr_list.lock to protect smc_lgr_list.list iterate in smcr_port_add. The crash calltrace show below: BUG: kernel NULL pointer dereference, address: 0000000000000000 PGD 0 P4D 0 Oops: 0000 [#1] SMP NOPTI CPU: 0 PID: 559726 Comm: kworker/0:92 Kdump: loaded Tainted: G Hardware name: Alibaba Cloud Alibaba Cloud ECS, BIOS 449e491 04/01/2014 Workqueue: events smc_ib_port_event_work [smc] RIP: 0010:smcr_port_add+0xa6/0xf0 [smc] RSP: 0000:ffffa5a2c8f67de0 EFLAGS: 00010297 RAX: 0000000000000001 RBX: ffff9935e0650000 RCX: 0000000000000000 RDX: 0000000000000010 RSI: ffff9935e0654290 RDI: ffff9935c8560000 RBP: 0000000000000000 R08: 0000000000000000 R09: ffff9934c0401918 R10: 0000000000000000 R11: ffffffffb4a5c278 R12: ffff99364029aae4 R13: ffff99364029aa00 R14: 00000000ffffffed R15: ffff99364029ab08 FS: 0000000000000000(0000) GS:ffff994380600000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000000000000 CR3: 0000000f06a10003 CR4: 0000000002770ef0 PKRU: 55555554 Call Trace: smc_ib_port_event_work+0x18f/0x380 [smc] process_one_work+0x19b/0x340 worker_thread+0x30/0x370 ? process_one_work+0x340/0x340 kthread+0x114/0x130 ? __kthread_cancel_work+0x50/0x50 ret_from_fork+0x1f/0x30
CVE-2023-54319 1 Linux 1 Linux Kernel 2025-12-31 N/A
In the Linux kernel, the following vulnerability has been resolved: pinctrl: at91-pio4: check return value of devm_kasprintf() devm_kasprintf() returns a pointer to dynamically allocated memory. Pointer could be NULL in case allocation fails. Check pointer validity. Identified with coccinelle (kmerr.cocci script). Depends-on: 1c4e5c470a56 ("pinctrl: at91: use devm_kasprintf() to avoid potential leaks") Depends-on: 5a8f9cf269e8 ("pinctrl: at91-pio4: use proper format specifier for unsigned int")
CVE-2023-54321 1 Linux 1 Linux Kernel 2025-12-31 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: driver core: fix potential null-ptr-deref in device_add() I got the following null-ptr-deref report while doing fault injection test: BUG: kernel NULL pointer dereference, address: 0000000000000058 CPU: 2 PID: 278 Comm: 37-i2c-ds2482 Tainted: G B W N 6.1.0-rc3+ RIP: 0010:klist_put+0x2d/0xd0 Call Trace: <TASK> klist_remove+0xf1/0x1c0 device_release_driver_internal+0x196/0x210 bus_remove_device+0x1bd/0x240 device_add+0xd3d/0x1100 w1_add_master_device+0x476/0x490 [wire] ds2482_probe+0x303/0x3e0 [ds2482] This is how it happened: w1_alloc_dev() // The dev->driver is set to w1_master_driver. memcpy(&dev->dev, device, sizeof(struct device)); device_add() bus_add_device() dpm_sysfs_add() // It fails, calls bus_remove_device. // error path bus_remove_device() // The dev->driver is not null, but driver is not bound. __device_release_driver() klist_remove(&dev->p->knode_driver) <-- It causes null-ptr-deref. // normal path bus_probe_device() // It's not called yet. device_bind_driver() If dev->driver is set, in the error path after calling bus_add_device() in device_add(), bus_remove_device() is called, then the device will be detached from driver. But device_bind_driver() is not called yet, so it causes null-ptr-deref while access the 'knode_driver'. To fix this, set dev->driver to null in the error path before calling bus_remove_device().
CVE-2023-54323 1 Linux 1 Linux Kernel 2025-12-31 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: cxl/pmem: Fix nvdimm registration races A loop of the form: while true; do modprobe cxl_pci; modprobe -r cxl_pci; done ...fails with the following crash signature: BUG: kernel NULL pointer dereference, address: 0000000000000040 [..] RIP: 0010:cxl_internal_send_cmd+0x5/0xb0 [cxl_core] [..] Call Trace: <TASK> cxl_pmem_ctl+0x121/0x240 [cxl_pmem] nvdimm_get_config_data+0xd6/0x1a0 [libnvdimm] nd_label_data_init+0x135/0x7e0 [libnvdimm] nvdimm_probe+0xd6/0x1c0 [libnvdimm] nvdimm_bus_probe+0x7a/0x1e0 [libnvdimm] really_probe+0xde/0x380 __driver_probe_device+0x78/0x170 driver_probe_device+0x1f/0x90 __device_attach_driver+0x85/0x110 bus_for_each_drv+0x7d/0xc0 __device_attach+0xb4/0x1e0 bus_probe_device+0x9f/0xc0 device_add+0x445/0x9c0 nd_async_device_register+0xe/0x40 [libnvdimm] async_run_entry_fn+0x30/0x130 ...namely that the bottom half of async nvdimm device registration runs after the CXL has already torn down the context that cxl_pmem_ctl() needs. Unlike the ACPI NFIT case that benefits from launching multiple nvdimm device registrations in parallel from those listed in the table, CXL is already marked PROBE_PREFER_ASYNCHRONOUS. So provide for a synchronous registration path to preclude this scenario.
CVE-2023-54325 1 Linux 1 Linux Kernel 2025-12-31 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: crypto: qat - fix out-of-bounds read When preparing an AER-CTR request, the driver copies the key provided by the user into a data structure that is accessible by the firmware. If the target device is QAT GEN4, the key size is rounded up by 16 since a rounded up size is expected by the device. If the key size is rounded up before the copy, the size used for copying the key might be bigger than the size of the region containing the key, causing an out-of-bounds read. Fix by doing the copy first and then update the keylen. This is to fix the following warning reported by KASAN: [ 138.150574] BUG: KASAN: global-out-of-bounds in qat_alg_skcipher_init_com.isra.0+0x197/0x250 [intel_qat] [ 138.150641] Read of size 32 at addr ffffffff88c402c0 by task cryptomgr_test/2340 [ 138.150651] CPU: 15 PID: 2340 Comm: cryptomgr_test Not tainted 6.2.0-rc1+ #45 [ 138.150659] Hardware name: Intel Corporation ArcherCity/ArcherCity, BIOS EGSDCRB1.86B.0087.D13.2208261706 08/26/2022 [ 138.150663] Call Trace: [ 138.150668] <TASK> [ 138.150922] kasan_check_range+0x13a/0x1c0 [ 138.150931] memcpy+0x1f/0x60 [ 138.150940] qat_alg_skcipher_init_com.isra.0+0x197/0x250 [intel_qat] [ 138.151006] qat_alg_skcipher_init_sessions+0xc1/0x240 [intel_qat] [ 138.151073] crypto_skcipher_setkey+0x82/0x160 [ 138.151085] ? prepare_keybuf+0xa2/0xd0 [ 138.151095] test_skcipher_vec_cfg+0x2b8/0x800
CVE-2022-49950 1 Linux 1 Linux Kernel 2025-12-31 7.8 High
In the Linux kernel, the following vulnerability has been resolved: misc: fastrpc: fix memory corruption on open The probe session-duplication overflow check incremented the session count also when there were no more available sessions so that memory beyond the fixed-size slab-allocated session array could be corrupted in fastrpc_session_alloc() on open().
CVE-2022-49949 1 Linux 1 Linux Kernel 2025-12-31 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: firmware_loader: Fix memory leak in firmware upload In the case of firmware-upload, an instance of struct fw_upload is allocated in firmware_upload_register(). This data needs to be freed in fw_dev_release(). Create a new fw_upload_free() function in sysfs_upload.c to handle the firmware-upload specific memory frees and incorporate the missing kfree call for the fw_upload structure.
CVE-2023-52623 3 Debian, Linux, Redhat 4 Debian Linux, Linux Kernel, Enterprise Linux and 1 more 2025-12-31 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: SUNRPC: Fix a suspicious RCU usage warning I received the following warning while running cthon against an ontap server running pNFS: [ 57.202521] ============================= [ 57.202522] WARNING: suspicious RCU usage [ 57.202523] 6.7.0-rc3-g2cc14f52aeb7 #41492 Not tainted [ 57.202525] ----------------------------- [ 57.202525] net/sunrpc/xprtmultipath.c:349 RCU-list traversed in non-reader section!! [ 57.202527] other info that might help us debug this: [ 57.202528] rcu_scheduler_active = 2, debug_locks = 1 [ 57.202529] no locks held by test5/3567. [ 57.202530] stack backtrace: [ 57.202532] CPU: 0 PID: 3567 Comm: test5 Not tainted 6.7.0-rc3-g2cc14f52aeb7 #41492 5b09971b4965c0aceba19f3eea324a4a806e227e [ 57.202534] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS unknown 2/2/2022 [ 57.202536] Call Trace: [ 57.202537] <TASK> [ 57.202540] dump_stack_lvl+0x77/0xb0 [ 57.202551] lockdep_rcu_suspicious+0x154/0x1a0 [ 57.202556] rpc_xprt_switch_has_addr+0x17c/0x190 [sunrpc ebe02571b9a8ceebf7d98e71675af20c19bdb1f6] [ 57.202596] rpc_clnt_setup_test_and_add_xprt+0x50/0x180 [sunrpc ebe02571b9a8ceebf7d98e71675af20c19bdb1f6] [ 57.202621] ? rpc_clnt_add_xprt+0x254/0x300 [sunrpc ebe02571b9a8ceebf7d98e71675af20c19bdb1f6] [ 57.202646] rpc_clnt_add_xprt+0x27a/0x300 [sunrpc ebe02571b9a8ceebf7d98e71675af20c19bdb1f6] [ 57.202671] ? __pfx_rpc_clnt_setup_test_and_add_xprt+0x10/0x10 [sunrpc ebe02571b9a8ceebf7d98e71675af20c19bdb1f6] [ 57.202696] nfs4_pnfs_ds_connect+0x345/0x760 [nfsv4 c716d88496ded0ea6d289bbea684fa996f9b57a9] [ 57.202728] ? __pfx_nfs4_test_session_trunk+0x10/0x10 [nfsv4 c716d88496ded0ea6d289bbea684fa996f9b57a9] [ 57.202754] nfs4_fl_prepare_ds+0x75/0xc0 [nfs_layout_nfsv41_files e3a4187f18ae8a27b630f9feae6831b584a9360a] [ 57.202760] filelayout_write_pagelist+0x4a/0x200 [nfs_layout_nfsv41_files e3a4187f18ae8a27b630f9feae6831b584a9360a] [ 57.202765] pnfs_generic_pg_writepages+0xbe/0x230 [nfsv4 c716d88496ded0ea6d289bbea684fa996f9b57a9] [ 57.202788] __nfs_pageio_add_request+0x3fd/0x520 [nfs 6c976fa593a7c2976f5a0aeb4965514a828e6902] [ 57.202813] nfs_pageio_add_request+0x18b/0x390 [nfs 6c976fa593a7c2976f5a0aeb4965514a828e6902] [ 57.202831] nfs_do_writepage+0x116/0x1e0 [nfs 6c976fa593a7c2976f5a0aeb4965514a828e6902] [ 57.202849] nfs_writepages_callback+0x13/0x30 [nfs 6c976fa593a7c2976f5a0aeb4965514a828e6902] [ 57.202866] write_cache_pages+0x265/0x450 [ 57.202870] ? __pfx_nfs_writepages_callback+0x10/0x10 [nfs 6c976fa593a7c2976f5a0aeb4965514a828e6902] [ 57.202891] nfs_writepages+0x141/0x230 [nfs 6c976fa593a7c2976f5a0aeb4965514a828e6902] [ 57.202913] do_writepages+0xd2/0x230 [ 57.202917] ? filemap_fdatawrite_wbc+0x5c/0x80 [ 57.202921] filemap_fdatawrite_wbc+0x67/0x80 [ 57.202924] filemap_write_and_wait_range+0xd9/0x170 [ 57.202930] nfs_wb_all+0x49/0x180 [nfs 6c976fa593a7c2976f5a0aeb4965514a828e6902] [ 57.202947] nfs4_file_flush+0x72/0xb0 [nfsv4 c716d88496ded0ea6d289bbea684fa996f9b57a9] [ 57.202969] __se_sys_close+0x46/0xd0 [ 57.202972] do_syscall_64+0x68/0x100 [ 57.202975] ? do_syscall_64+0x77/0x100 [ 57.202976] ? do_syscall_64+0x77/0x100 [ 57.202979] entry_SYSCALL_64_after_hwframe+0x6e/0x76 [ 57.202982] RIP: 0033:0x7fe2b12e4a94 [ 57.202985] Code: 00 f7 d8 64 89 01 48 83 c8 ff c3 66 2e 0f 1f 84 00 00 00 00 00 90 f3 0f 1e fa 80 3d d5 18 0e 00 00 74 13 b8 03 00 00 00 0f 05 <48> 3d 00 f0 ff ff 77 44 c3 0f 1f 00 48 83 ec 18 89 7c 24 0c e8 c3 [ 57.202987] RSP: 002b:00007ffe857ddb38 EFLAGS: 00000202 ORIG_RAX: 0000000000000003 [ 57.202989] RAX: ffffffffffffffda RBX: 00007ffe857dfd68 RCX: 00007fe2b12e4a94 [ 57.202991] RDX: 0000000000002000 RSI: 00007ffe857ddc40 RDI: 0000000000000003 [ 57.202992] RBP: 00007ffe857dfc50 R08: 7fffffffffffffff R09: 0000000065650f49 [ 57.202993] R10: 00007f ---truncated---
CVE-2023-52927 2 Debian, Linux 2 Debian Linux, Linux Kernel 2025-12-31 7.8 High
In the Linux kernel, the following vulnerability has been resolved: netfilter: allow exp not to be removed in nf_ct_find_expectation Currently nf_conntrack_in() calling nf_ct_find_expectation() will remove the exp from the hash table. However, in some scenario, we expect the exp not to be removed when the created ct will not be confirmed, like in OVS and TC conntrack in the following patches. This patch allows exp not to be removed by setting IPS_CONFIRMED in the status of the tmpl.
CVE-2021-22555 4 Brocade, Linux, Netapp and 1 more 43 Fabric Operating System, Linux Kernel, Aff 500f and 40 more 2025-12-30 8.3 High
A heap out-of-bounds write affecting Linux since v2.6.19-rc1 was discovered in net/netfilter/x_tables.c. This allows an attacker to gain privileges or cause a DoS (via heap memory corruption) through user name space
CVE-2023-53469 1 Linux 1 Linux Kernel 2025-12-29 7.0 High
This CVE ID has been rejected or withdrawn by its CVE Numbering Authority.
CVE-2025-68358 1 Linux 1 Linux Kernel 2025-12-29 N/A
In the Linux kernel, the following vulnerability has been resolved: btrfs: fix racy bitfield write in btrfs_clear_space_info_full() From the memory-barriers.txt document regarding memory barrier ordering guarantees: (*) These guarantees do not apply to bitfields, because compilers often generate code to modify these using non-atomic read-modify-write sequences. Do not attempt to use bitfields to synchronize parallel algorithms. (*) Even in cases where bitfields are protected by locks, all fields in a given bitfield must be protected by one lock. If two fields in a given bitfield are protected by different locks, the compiler's non-atomic read-modify-write sequences can cause an update to one field to corrupt the value of an adjacent field. btrfs_space_info has a bitfield sharing an underlying word consisting of the fields full, chunk_alloc, and flush: struct btrfs_space_info { struct btrfs_fs_info * fs_info; /* 0 8 */ struct btrfs_space_info * parent; /* 8 8 */ ... int clamp; /* 172 4 */ unsigned int full:1; /* 176: 0 4 */ unsigned int chunk_alloc:1; /* 176: 1 4 */ unsigned int flush:1; /* 176: 2 4 */ ... Therefore, to be safe from parallel read-modify-writes losing a write to one of the bitfield members protected by a lock, all writes to all the bitfields must use the lock. They almost universally do, except for btrfs_clear_space_info_full() which iterates over the space_infos and writes out found->full = 0 without a lock. Imagine that we have one thread completing a transaction in which we finished deleting a block_group and are thus calling btrfs_clear_space_info_full() while simultaneously the data reclaim ticket infrastructure is running do_async_reclaim_data_space(): T1 T2 btrfs_commit_transaction btrfs_clear_space_info_full data_sinfo->full = 0 READ: full:0, chunk_alloc:0, flush:1 do_async_reclaim_data_space(data_sinfo) spin_lock(&space_info->lock); if(list_empty(tickets)) space_info->flush = 0; READ: full: 0, chunk_alloc:0, flush:1 MOD/WRITE: full: 0, chunk_alloc:0, flush:0 spin_unlock(&space_info->lock); return; MOD/WRITE: full:0, chunk_alloc:0, flush:1 and now data_sinfo->flush is 1 but the reclaim worker has exited. This breaks the invariant that flush is 0 iff there is no work queued or running. Once this invariant is violated, future allocations that go into __reserve_bytes() will add tickets to space_info->tickets but will see space_info->flush is set to 1 and not queue the work. After this, they will block forever on the resulting ticket, as it is now impossible to kick the worker again. I also confirmed by looking at the assembly of the affected kernel that it is doing RMW operations. For example, to set the flush (3rd) bit to 0, the assembly is: andb $0xfb,0x60(%rbx) and similarly for setting the full (1st) bit to 0: andb $0xfe,-0x20(%rax) So I think this is really a bug on practical systems. I have observed a number of systems in this exact state, but am currently unable to reproduce it. Rather than leaving this footgun lying around for the future, take advantage of the fact that there is room in the struct anyway, and that it is already quite large and simply change the three bitfield members to bools. This avoids writes to space_info->full having any effect on ---truncated---
CVE-2025-68356 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: gfs2: Prevent recursive memory reclaim Function new_inode() returns a new inode with inode->i_mapping->gfp_mask set to GFP_HIGHUSER_MOVABLE. This value includes the __GFP_FS flag, so allocations in that address space can recurse into filesystem memory reclaim. We don't want that to happen because it can consume a significant amount of stack memory. Worse than that is that it can also deadlock: for example, in several places, gfs2_unstuff_dinode() is called inside filesystem transactions. This calls filemap_grab_folio(), which can allocate a new folio, which can trigger memory reclaim. If memory reclaim recurses into the filesystem and starts another transaction, a deadlock will ensue. To fix these kinds of problems, prevent memory reclaim from recursing into filesystem code by making sure that the gfp_mask of inode address spaces doesn't include __GFP_FS. The "meta" and resource group address spaces were already using GFP_NOFS as their gfp_mask (which doesn't include __GFP_FS). The default value of GFP_HIGHUSER_MOVABLE is less restrictive than GFP_NOFS, though. To avoid being overly limiting, use the default value and only knock off the __GFP_FS flag. I'm not sure if this will actually make a difference, but it also shouldn't hurt. This patch is loosely based on commit ad22c7a043c2 ("xfs: prevent stack overflows from page cache allocation"). Fixes xfstest generic/273.
CVE-2025-68355 1 Linux 1 Linux Kernel 2025-12-29 N/A
In the Linux kernel, the following vulnerability has been resolved: bpf: Fix exclusive map memory leak When excl_prog_hash is 0 and excl_prog_hash_size is non-zero, the map also needs to be freed. Otherwise, the map memory will not be reclaimed, just like the memory leak problem reported by syzbot [1]. syzbot reported: BUG: memory leak backtrace (crc 7b9fb9b4): map_create+0x322/0x11e0 kernel/bpf/syscall.c:1512 __sys_bpf+0x3556/0x3610 kernel/bpf/syscall.c:6131
CVE-2025-68353 1 Linux 1 Linux Kernel 2025-12-29 7.0 High
In the Linux kernel, the following vulnerability has been resolved: net: vxlan: prevent NULL deref in vxlan_xmit_one Neither sock4 nor sock6 pointers are guaranteed to be non-NULL in vxlan_xmit_one, e.g. if the iface is brought down. This can lead to the following NULL dereference: BUG: kernel NULL pointer dereference, address: 0000000000000010 Oops: Oops: 0000 [#1] SMP NOPTI RIP: 0010:vxlan_xmit_one+0xbb3/0x1580 Call Trace: vxlan_xmit+0x429/0x610 dev_hard_start_xmit+0x55/0xa0 __dev_queue_xmit+0x6d0/0x7f0 ip_finish_output2+0x24b/0x590 ip_output+0x63/0x110 Mentioned commits changed the code path in vxlan_xmit_one and as a side effect the sock4/6 pointer validity checks in vxlan(6)_get_route were lost. Fix this by adding back checks. Since both commits being fixed were released in the same version (v6.7) and are strongly related, bundle the fixes in a single commit.
CVE-2025-68352 1 Linux 1 Linux Kernel 2025-12-29 N/A
In the Linux kernel, the following vulnerability has been resolved: spi: ch341: fix out-of-bounds memory access in ch341_transfer_one Discovered by Atuin - Automated Vulnerability Discovery Engine. The 'len' variable is calculated as 'min(32, trans->len + 1)', which includes the 1-byte command header. When copying data from 'trans->tx_buf' to 'ch341->tx_buf + 1', using 'len' as the length is incorrect because: 1. It causes an out-of-bounds read from 'trans->tx_buf' (which has size 'trans->len', i.e., 'len - 1' in this context). 2. It can cause an out-of-bounds write to 'ch341->tx_buf' if 'len' is CH341_PACKET_LENGTH (32). Writing 32 bytes to ch341->tx_buf + 1 overflows the buffer. Fix this by copying 'len - 1' bytes.
CVE-2025-68351 1 Linux 1 Linux Kernel 2025-12-29 N/A
In the Linux kernel, the following vulnerability has been resolved: exfat: fix refcount leak in exfat_find Fix refcount leaks in `exfat_find` related to `exfat_get_dentry_set`. Function `exfat_get_dentry_set` would increase the reference counter of `es->bh` on success. Therefore, `exfat_put_dentry_set` must be called after `exfat_get_dentry_set` to ensure refcount consistency. This patch relocate two checks to avoid possible leaks.
CVE-2025-68350 1 Linux 1 Linux Kernel 2025-12-29 N/A
In the Linux kernel, the following vulnerability has been resolved: exfat: fix divide-by-zero in exfat_allocate_bitmap The variable max_ra_count can be 0 in exfat_allocate_bitmap(), which causes a divide-by-zero error in the subsequent modulo operation (i % max_ra_count), leading to a system crash. When max_ra_count is 0, it means that readahead is not used. This patch load the bitmap without readahead.