| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
drm/radeon: check the alloc_workqueue return value in radeon_crtc_init()
check the alloc_workqueue return value in radeon_crtc_init()
to avoid null-ptr-deref. |
| In the Linux kernel, the following vulnerability has been resolved:
drivers/amd/pm: fix a use-after-free in kv_parse_power_table
When ps allocated by kzalloc equals to NULL, kv_parse_power_table
frees adev->pm.dpm.ps that allocated before. However, after the control
flow goes through the following call chains:
kv_parse_power_table
|-> kv_dpm_init
|-> kv_dpm_sw_init
|-> kv_dpm_fini
The adev->pm.dpm.ps is used in the for loop of kv_dpm_fini after its
first free in kv_parse_power_table and causes a use-after-free bug. |
| In the Linux kernel, the following vulnerability has been resolved:
mfd: syscon: Fix null pointer dereference in of_syscon_register()
kasprintf() returns a pointer to dynamically allocated memory
which can be NULL upon failure. |
| In the Linux kernel, the following vulnerability has been resolved:
EDAC/thunderx: Fix possible out-of-bounds string access
Enabling -Wstringop-overflow globally exposes a warning for a common bug
in the usage of strncat():
drivers/edac/thunderx_edac.c: In function 'thunderx_ocx_com_threaded_isr':
drivers/edac/thunderx_edac.c:1136:17: error: 'strncat' specified bound 1024 equals destination size [-Werror=stringop-overflow=]
1136 | strncat(msg, other, OCX_MESSAGE_SIZE);
| ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
...
1145 | strncat(msg, other, OCX_MESSAGE_SIZE);
...
1150 | strncat(msg, other, OCX_MESSAGE_SIZE);
...
Apparently the author of this driver expected strncat() to behave the
way that strlcat() does, which uses the size of the destination buffer
as its third argument rather than the length of the source buffer. The
result is that there is no check on the size of the allocated buffer.
Change it to strlcat().
[ bp: Trim compiler output, fixup commit message. ] |
| In the Linux kernel, the following vulnerability has been resolved:
bpf: fix check for attempt to corrupt spilled pointer
When register is spilled onto a stack as a 1/2/4-byte register, we set
slot_type[BPF_REG_SIZE - 1] (plus potentially few more below it,
depending on actual spill size). So to check if some stack slot has
spilled register we need to consult slot_type[7], not slot_type[0].
To avoid the need to remember and double-check this in the future, just
use is_spilled_reg() helper. |
| In the Linux kernel, the following vulnerability has been resolved:
iommu: Don't reserve 0-length IOVA region
When the bootloader/firmware doesn't setup the framebuffers, their
address and size are 0 in "iommu-addresses" property. If IOVA region is
reserved with 0 length, then it ends up corrupting the IOVA rbtree with
an entry which has pfn_hi < pfn_lo.
If we intend to use display driver in kernel without framebuffer then
it's causing the display IOMMU mappings to fail as entire valid IOVA
space is reserved when address and length are passed as 0.
An ideal solution would be firmware removing the "iommu-addresses"
property and corresponding "memory-region" if display is not present.
But the kernel should be able to handle this by checking for size of
IOVA region and skipping the IOVA reservation if size is 0. Also, add
a warning if firmware is requesting 0-length IOVA region reservation. |
| In the Linux kernel, the following vulnerability has been resolved:
powerpc/pseries/memhp: Fix access beyond end of drmem array
dlpar_memory_remove_by_index() may access beyond the bounds of the
drmem lmb array when the LMB lookup fails to match an entry with the
given DRC index. When the search fails, the cursor is left pointing to
&drmem_info->lmbs[drmem_info->n_lmbs], which is one element past the
last valid entry in the array. The debug message at the end of the
function then dereferences this pointer:
pr_debug("Failed to hot-remove memory at %llx\n",
lmb->base_addr);
This was found by inspection and confirmed with KASAN:
pseries-hotplug-mem: Attempting to hot-remove LMB, drc index 1234
==================================================================
BUG: KASAN: slab-out-of-bounds in dlpar_memory+0x298/0x1658
Read of size 8 at addr c000000364e97fd0 by task bash/949
dump_stack_lvl+0xa4/0xfc (unreliable)
print_report+0x214/0x63c
kasan_report+0x140/0x2e0
__asan_load8+0xa8/0xe0
dlpar_memory+0x298/0x1658
handle_dlpar_errorlog+0x130/0x1d0
dlpar_store+0x18c/0x3e0
kobj_attr_store+0x68/0xa0
sysfs_kf_write+0xc4/0x110
kernfs_fop_write_iter+0x26c/0x390
vfs_write+0x2d4/0x4e0
ksys_write+0xac/0x1a0
system_call_exception+0x268/0x530
system_call_vectored_common+0x15c/0x2ec
Allocated by task 1:
kasan_save_stack+0x48/0x80
kasan_set_track+0x34/0x50
kasan_save_alloc_info+0x34/0x50
__kasan_kmalloc+0xd0/0x120
__kmalloc+0x8c/0x320
kmalloc_array.constprop.0+0x48/0x5c
drmem_init+0x2a0/0x41c
do_one_initcall+0xe0/0x5c0
kernel_init_freeable+0x4ec/0x5a0
kernel_init+0x30/0x1e0
ret_from_kernel_user_thread+0x14/0x1c
The buggy address belongs to the object at c000000364e80000
which belongs to the cache kmalloc-128k of size 131072
The buggy address is located 0 bytes to the right of
allocated 98256-byte region [c000000364e80000, c000000364e97fd0)
==================================================================
pseries-hotplug-mem: Failed to hot-remove memory at 0
Log failed lookups with a separate message and dereference the
cursor only when it points to a valid entry. |
| In the Linux kernel, the following vulnerability has been resolved:
perf/x86/intel/uncore: Fix NULL pointer dereference issue in upi_fill_topology()
Get logical socket id instead of physical id in discover_upi_topology()
to avoid out-of-bound access on 'upi = &type->topology[nid][idx];' line
that leads to NULL pointer dereference in upi_fill_topology() |
| In the Linux kernel, the following vulnerability has been resolved:
gfs2: Fix kernel NULL pointer dereference in gfs2_rgrp_dump
Syzkaller has reported a NULL pointer dereference when accessing
rgd->rd_rgl in gfs2_rgrp_dump(). This can happen when creating
rgd->rd_gl fails in read_rindex_entry(). Add a NULL pointer check in
gfs2_rgrp_dump() to prevent that. |
| In the Linux kernel, the following vulnerability has been resolved:
media: pvrusb2: fix use after free on context disconnection
Upon module load, a kthread is created targeting the
pvr2_context_thread_func function, which may call pvr2_context_destroy
and thus call kfree() on the context object. However, that might happen
before the usb hub_event handler is able to notify the driver. This
patch adds a sanity check before the invalid read reported by syzbot,
within the context disconnection call stack. |
| In the Linux kernel, the following vulnerability has been resolved:
keys: Fix UAF in key_put()
Once a key's reference count has been reduced to 0, the garbage collector
thread may destroy it at any time and so key_put() is not allowed to touch
the key after that point. The most key_put() is normally allowed to do is
to touch key_gc_work as that's a static global variable.
However, in an effort to speed up the reclamation of quota, this is now
done in key_put() once the key's usage is reduced to 0 - but now the code
is looking at the key after the deadline, which is forbidden.
Fix this by using a flag to indicate that a key can be gc'd now rather than
looking at the key's refcount in the garbage collector. |
| In the Linux kernel, the following vulnerability has been resolved:
ipv6: mcast: extend RCU protection in igmp6_send()
igmp6_send() can be called without RTNL or RCU being held.
Extend RCU protection so that we can safely fetch the net pointer
and avoid a potential UAF.
Note that we no longer can use sock_alloc_send_skb() because
ipv6.igmp_sk uses GFP_KERNEL allocations which can sleep.
Instead use alloc_skb() and charge the net->ipv6.igmp_sk
socket under RCU protection. |
| In the Linux kernel, the following vulnerability has been resolved:
can: etas_es58x: es58x_rx_err_msg(): fix memory leak in error path
In es58x_rx_err_msg(), if can->do_set_mode() fails, the function
directly returns without calling netif_rx(skb). This means that the
skb previously allocated by alloc_can_err_skb() is not freed. In other
terms, this is a memory leak.
This patch simply removes the return statement in the error branch and
let the function continue.
Issue was found with GCC -fanalyzer, please follow the link below for
details. |
| In the Linux kernel, the following vulnerability has been resolved:
Revert "Revert "block, bfq: honor already-setup queue merges""
A crash [1] happened to be triggered in conjunction with commit
2d52c58b9c9b ("block, bfq: honor already-setup queue merges"). The
latter was then reverted by commit ebc69e897e17 ("Revert "block, bfq:
honor already-setup queue merges""). Yet, the reverted commit was not
the one introducing the bug. In fact, it actually triggered a UAF
introduced by a different commit, and now fixed by commit d29bd41428cf
("block, bfq: reset last_bfqq_created on group change").
So, there is no point in keeping commit 2d52c58b9c9b ("block, bfq:
honor already-setup queue merges") out. This commit restores it.
[1] https://bugzilla.kernel.org/show_bug.cgi?id=214503 |
| In the Linux kernel, the following vulnerability has been resolved:
KVM: x86/mmu: Zap _all_ roots when unmapping gfn range in TDP MMU
Zap both valid and invalid roots when zapping/unmapping a gfn range, as
KVM must ensure it holds no references to the freed page after returning
from the unmap operation. Most notably, the TDP MMU doesn't zap invalid
roots in mmu_notifier callbacks. This leads to use-after-free and other
issues if the mmu_notifier runs to completion while an invalid root
zapper yields as KVM fails to honor the requirement that there must be
_no_ references to the page after the mmu_notifier returns.
The bug is most easily reproduced by hacking KVM to cause a collision
between set_nx_huge_pages() and kvm_mmu_notifier_release(), but the bug
exists between kvm_mmu_notifier_invalidate_range_start() and memslot
updates as well. Invalidating a root ensures pages aren't accessible by
the guest, and KVM won't read or write page data itself, but KVM will
trigger e.g. kvm_set_pfn_dirty() when zapping SPTEs, and thus completing
a zap of an invalid root _after_ the mmu_notifier returns is fatal.
WARNING: CPU: 24 PID: 1496 at arch/x86/kvm/../../../virt/kvm/kvm_main.c:173 [kvm]
RIP: 0010:kvm_is_zone_device_pfn+0x96/0xa0 [kvm]
Call Trace:
<TASK>
kvm_set_pfn_dirty+0xa8/0xe0 [kvm]
__handle_changed_spte+0x2ab/0x5e0 [kvm]
__handle_changed_spte+0x2ab/0x5e0 [kvm]
__handle_changed_spte+0x2ab/0x5e0 [kvm]
zap_gfn_range+0x1f3/0x310 [kvm]
kvm_tdp_mmu_zap_invalidated_roots+0x50/0x90 [kvm]
kvm_mmu_zap_all_fast+0x177/0x1a0 [kvm]
set_nx_huge_pages+0xb4/0x190 [kvm]
param_attr_store+0x70/0x100
module_attr_store+0x19/0x30
kernfs_fop_write_iter+0x119/0x1b0
new_sync_write+0x11c/0x1b0
vfs_write+0x1cc/0x270
ksys_write+0x5f/0xe0
do_syscall_64+0x38/0xc0
entry_SYSCALL_64_after_hwframe+0x44/0xae
</TASK> |
| In the Linux kernel, the following vulnerability has been resolved:
RDMA/irdma: Fix a user-after-free in add_pble_prm
When irdma_hmc_sd_one fails, 'chunk' is freed while its still on the PBLE
info list.
Add the chunk entry to the PBLE info list only after successful setting of
the SD in irdma_hmc_sd_one. |
| In the Linux kernel, the following vulnerability has been resolved:
firmware: arm_scpi: Fix string overflow in SCPI genpd driver
Without the bound checks for scpi_pd->name, it could result in the buffer
overflow when copying the SCPI device name from the corresponding device
tree node as the name string is set at maximum size of 30.
Let us fix it by using devm_kasprintf so that the string buffer is
allocated dynamically. |
| In the Linux kernel, the following vulnerability has been resolved:
net: hns3: fix use-after-free bug in hclgevf_send_mbx_msg
Currently, the hns3_remove function firstly uninstall client instance,
and then uninstall acceletion engine device. The netdevice is freed in
client instance uninstall process, but acceletion engine device uninstall
process still use it to trace runtime information. This causes a use after
free problem.
So fixes it by check the instance register state to avoid use after free. |
| In the Linux kernel, the following vulnerability has been resolved:
net: stmmac: fix tc flower deletion for VLAN priority Rx steering
To replicate the issue:-
1) Add 1 flower filter for VLAN Priority based frame steering:-
$ IFDEVNAME=eth0
$ tc qdisc add dev $IFDEVNAME ingress
$ tc qdisc add dev $IFDEVNAME root mqprio num_tc 8 \
map 0 1 2 3 4 5 6 7 0 0 0 0 0 0 0 0 \
queues 1@0 1@1 1@2 1@3 1@4 1@5 1@6 1@7 hw 0
$ tc filter add dev $IFDEVNAME parent ffff: protocol 802.1Q \
flower vlan_prio 0 hw_tc 0
2) Get the 'pref' id
$ tc filter show dev $IFDEVNAME ingress
3) Delete a specific tc flower record (say pref 49151)
$ tc filter del dev $IFDEVNAME parent ffff: pref 49151
From dmesg, we will observe kernel NULL pointer ooops
[ 197.170464] BUG: kernel NULL pointer dereference, address: 0000000000000000
[ 197.171367] #PF: supervisor read access in kernel mode
[ 197.171367] #PF: error_code(0x0000) - not-present page
[ 197.171367] PGD 0 P4D 0
[ 197.171367] Oops: 0000 [#1] PREEMPT SMP NOPTI
<snip>
[ 197.171367] RIP: 0010:tc_setup_cls+0x20b/0x4a0 [stmmac]
<snip>
[ 197.171367] Call Trace:
[ 197.171367] <TASK>
[ 197.171367] ? __stmmac_disable_all_queues+0xa8/0xe0 [stmmac]
[ 197.171367] stmmac_setup_tc_block_cb+0x70/0x110 [stmmac]
[ 197.171367] tc_setup_cb_destroy+0xb3/0x180
[ 197.171367] fl_hw_destroy_filter+0x94/0xc0 [cls_flower]
The above issue is due to previous incorrect implementation of
tc_del_vlan_flow(), shown below, that uses flow_cls_offload_flow_rule()
to get struct flow_rule *rule which is no longer valid for tc filter
delete operation.
struct flow_rule *rule = flow_cls_offload_flow_rule(cls);
struct flow_dissector *dissector = rule->match.dissector;
So, to ensure tc_del_vlan_flow() deletes the right VLAN cls record for
earlier configured RX queue (configured by hw_tc) in tc_add_vlan_flow(),
this patch introduces stmmac_rfs_entry as driver-side flow_cls_offload
record for 'RX frame steering' tc flower, currently used for VLAN
priority. The implementation has taken consideration for future extension
to include other type RX frame steering such as EtherType based.
v2:
- Clean up overly extensive backtrace and rewrite git message to better
explain the kernel NULL pointer issue. |
| In the Linux kernel, the following vulnerability has been resolved:
mptcp: fix deadlock in __mptcp_push_pending()
__mptcp_push_pending() may call mptcp_flush_join_list() with subflow
socket lock held. If such call hits mptcp_sockopt_sync_all() then
subsequently __mptcp_sockopt_sync() could try to lock the subflow
socket for itself, causing a deadlock.
sysrq: Show Blocked State
task:ss-server state:D stack: 0 pid: 938 ppid: 1 flags:0x00000000
Call Trace:
<TASK>
__schedule+0x2d6/0x10c0
? __mod_memcg_state+0x4d/0x70
? csum_partial+0xd/0x20
? _raw_spin_lock_irqsave+0x26/0x50
schedule+0x4e/0xc0
__lock_sock+0x69/0x90
? do_wait_intr_irq+0xa0/0xa0
__lock_sock_fast+0x35/0x50
mptcp_sockopt_sync_all+0x38/0xc0
__mptcp_push_pending+0x105/0x200
mptcp_sendmsg+0x466/0x490
sock_sendmsg+0x57/0x60
__sys_sendto+0xf0/0x160
? do_wait_intr_irq+0xa0/0xa0
? fpregs_restore_userregs+0x12/0xd0
__x64_sys_sendto+0x20/0x30
do_syscall_64+0x38/0x90
entry_SYSCALL_64_after_hwframe+0x44/0xae
RIP: 0033:0x7f9ba546c2d0
RSP: 002b:00007ffdc3b762d8 EFLAGS: 00000246 ORIG_RAX: 000000000000002c
RAX: ffffffffffffffda RBX: 00007f9ba56c8060 RCX: 00007f9ba546c2d0
RDX: 000000000000077a RSI: 0000000000e5e180 RDI: 0000000000000234
RBP: 0000000000cc57f0 R08: 0000000000000000 R09: 0000000000000000
R10: 0000000000000000 R11: 0000000000000246 R12: 00007f9ba56c8060
R13: 0000000000b6ba60 R14: 0000000000cc7840 R15: 41d8685b1d7901b8
</TASK>
Fix the issue by using __mptcp_flush_join_list() instead of plain
mptcp_flush_join_list() inside __mptcp_push_pending(), as suggested by
Florian. The sockopt sync will be deferred to the workqueue. |