Search

Search Results (328268 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2025-69275 3 Broadcom, Linux, Microsoft 3 Dx Netops Spectrum, Linux Kernel, Windows 2026-01-14 6.1 Medium
Dependency on Vulnerable Third-Party Component vulnerability in Broadcom DX NetOps Spectrum on Windows, Linux allows DOM-Based XSS.This issue affects DX NetOps Spectrum: 24.3.9 and earlier.
CVE-2024-20887 1 Samsung 1 Galaxy Buds Manager 2026-01-14 6.2 Medium
Arbitrary directory creation in GalaxyBudsManager PC prior to version 2.1.240315.51 allows attacker to create arbitrary directory.
CVE-2025-69276 3 Broadcom, Linux, Microsoft 3 Dx Netops Spectrum, Linux Kernel, Windows 2026-01-14 8.8 High
Deserialization of Untrusted Data vulnerability in Broadcom DX NetOps Spectrum on Windows, Linux allows Object Injection.This issue affects DX NetOps Spectrum: 24.3.13 and earlier.
CVE-2022-37019 1 Hp 52 Elite Slice, Elite Slice Firmware, Elite Slice For Meeting Rooms and 49 more 2026-01-14 6.8 Medium
Potential vulnerabilities have been identified in the system BIOS for certain HP PC products which may allow escalation of privileges and code execution. HP is releasing firmware updates to mitigate the potential vulnerabilities.
CVE-2024-31143 1 Xen 1 Xen 2026-01-14 7.5 High
An optional feature of PCI MSI called "Multiple Message" allows a device to use multiple consecutive interrupt vectors. Unlike for MSI-X, the setting up of these consecutive vectors needs to happen all in one go. In this handling an error path could be taken in different situations, with or without a particular lock held. This error path wrongly releases the lock even when it is not currently held.
CVE-2022-50908 1 Mailhog 1 Mailhog 2026-01-14 7.2 High
Mailhog 1.0.1 contains a stored cross-site scripting vulnerability that allows attackers to inject malicious scripts through email attachments. Attackers can send crafted emails with XSS payloads to execute arbitrary API calls, including message deletion and browser manipulation.
CVE-2025-52435 1 Apache 1 Nimble 2026-01-14 7.5 High
J2EE Misconfiguration: Data Transmission Without Encryption vulnerability in Apache NimBLE. Improper handling of Pause Encryption procedure on Link Layer results in a previously encrypted connection being left in un-encrypted state allowing an eavesdropper to observe the remainder of the exchange. This issue affects Apache NimBLE: through <= 1.8.0. Users are recommended to upgrade to version 1.9.0, which fixes the issue.
CVE-2024-41061 1 Linux 1 Linux Kernel 2026-01-14 7.8 High
In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Fix array-index-out-of-bounds in dml2/FCLKChangeSupport [Why] Potential out of bounds access in dml2_calculate_rq_and_dlg_params() because the value of out_lowest_state_idx used as an index for FCLKChangeSupport array can be greater than 1. [How] Currently dml2 core specifies identical values for all FCLKChangeSupport elements. Always use index 0 in the condition to avoid out of bounds access.
CVE-2022-50909 1 Algosolutions 1 Algo 8028 2026-01-14 8.8 High
Algo 8028 Control Panel version 3.3.3 contains a command injection vulnerability in the fm-data.lua endpoint that allows authenticated attackers to execute arbitrary commands. Attackers can exploit the insecure 'source' parameter by injecting commands that are executed with root privileges, enabling remote code execution through a crafted POST request.
CVE-2025-71089 1 Linux 1 Linux Kernel 2026-01-14 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: iommu: disable SVA when CONFIG_X86 is set Patch series "Fix stale IOTLB entries for kernel address space", v7. This proposes a fix for a security vulnerability related to IOMMU Shared Virtual Addressing (SVA). In an SVA context, an IOMMU can cache kernel page table entries. When a kernel page table page is freed and reallocated for another purpose, the IOMMU might still hold stale, incorrect entries. This can be exploited to cause a use-after-free or write-after-free condition, potentially leading to privilege escalation or data corruption. This solution introduces a deferred freeing mechanism for kernel page table pages, which provides a safe window to notify the IOMMU to invalidate its caches before the page is reused. This patch (of 8): In the IOMMU Shared Virtual Addressing (SVA) context, the IOMMU hardware shares and walks the CPU's page tables. The x86 architecture maps the kernel's virtual address space into the upper portion of every process's page table. Consequently, in an SVA context, the IOMMU hardware can walk and cache kernel page table entries. The Linux kernel currently lacks a notification mechanism for kernel page table changes, specifically when page table pages are freed and reused. The IOMMU driver is only notified of changes to user virtual address mappings. This can cause the IOMMU's internal caches to retain stale entries for kernel VA. Use-After-Free (UAF) and Write-After-Free (WAF) conditions arise when kernel page table pages are freed and later reallocated. The IOMMU could misinterpret the new data as valid page table entries. The IOMMU might then walk into attacker-controlled memory, leading to arbitrary physical memory DMA access or privilege escalation. This is also a Write-After-Free issue, as the IOMMU will potentially continue to write Accessed and Dirty bits to the freed memory while attempting to walk the stale page tables. Currently, SVA contexts are unprivileged and cannot access kernel mappings. However, the IOMMU will still walk kernel-only page tables all the way down to the leaf entries, where it realizes the mapping is for the kernel and errors out. This means the IOMMU still caches these intermediate page table entries, making the described vulnerability a real concern. Disable SVA on x86 architecture until the IOMMU can receive notification to flush the paging cache before freeing the CPU kernel page table pages.
CVE-2025-68821 1 Linux 1 Linux Kernel 2026-01-14 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: fuse: fix readahead reclaim deadlock Commit e26ee4efbc79 ("fuse: allocate ff->release_args only if release is needed") skips allocating ff->release_args if the server does not implement open. However in doing so, fuse_prepare_release() now skips grabbing the reference on the inode, which makes it possible for an inode to be evicted from the dcache while there are inflight readahead requests. This causes a deadlock if the server triggers reclaim while servicing the readahead request and reclaim attempts to evict the inode of the file being read ahead. Since the folio is locked during readahead, when reclaim evicts the fuse inode and fuse_evict_inode() attempts to remove all folios associated with the inode from the page cache (truncate_inode_pages_range()), reclaim will block forever waiting for the lock since readahead cannot relinquish the lock because it is itself blocked in reclaim: >>> stack_trace(1504735) folio_wait_bit_common (mm/filemap.c:1308:4) folio_lock (./include/linux/pagemap.h:1052:3) truncate_inode_pages_range (mm/truncate.c:336:10) fuse_evict_inode (fs/fuse/inode.c:161:2) evict (fs/inode.c:704:3) dentry_unlink_inode (fs/dcache.c:412:3) __dentry_kill (fs/dcache.c:615:3) shrink_kill (fs/dcache.c:1060:12) shrink_dentry_list (fs/dcache.c:1087:3) prune_dcache_sb (fs/dcache.c:1168:2) super_cache_scan (fs/super.c:221:10) do_shrink_slab (mm/shrinker.c:435:9) shrink_slab (mm/shrinker.c:626:10) shrink_node (mm/vmscan.c:5951:2) shrink_zones (mm/vmscan.c:6195:3) do_try_to_free_pages (mm/vmscan.c:6257:3) do_swap_page (mm/memory.c:4136:11) handle_pte_fault (mm/memory.c:5562:10) handle_mm_fault (mm/memory.c:5870:9) do_user_addr_fault (arch/x86/mm/fault.c:1338:10) handle_page_fault (arch/x86/mm/fault.c:1481:3) exc_page_fault (arch/x86/mm/fault.c:1539:2) asm_exc_page_fault+0x22/0x27 Fix this deadlock by allocating ff->release_args and grabbing the reference on the inode when preparing the file for release even if the server does not implement open. The inode reference will be dropped when the last reference on the fuse file is dropped (see fuse_file_put() -> fuse_release_end()).
CVE-2025-71101 1 Linux 1 Linux Kernel 2026-01-14 N/A
In the Linux kernel, the following vulnerability has been resolved: platform/x86: hp-bioscfg: Fix out-of-bounds array access in ACPI package parsing The hp_populate_*_elements_from_package() functions in the hp-bioscfg driver contain out-of-bounds array access vulnerabilities. These functions parse ACPI packages into internal data structures using a for loop with index variable 'elem' that iterates through enum_obj/integer_obj/order_obj/password_obj/string_obj arrays. When processing multi-element fields like PREREQUISITES and ENUM_POSSIBLE_VALUES, these functions read multiple consecutive array elements using expressions like 'enum_obj[elem + reqs]' and 'enum_obj[elem + pos_values]' within nested loops. The bug is that the bounds check only validated elem, but did not consider the additional offset when accessing elem + reqs or elem + pos_values. The fix changes the bounds check to validate the actual accessed index.
CVE-2025-71070 1 Linux 1 Linux Kernel 2026-01-14 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ublk: clean up user copy references on ublk server exit If a ublk server process releases a ublk char device file, any requests dispatched to the ublk server but not yet completed will retain a ref value of UBLK_REFCOUNT_INIT. Before commit e63d2228ef83 ("ublk: simplify aborting ublk request"), __ublk_fail_req() would decrement the reference count before completing the failed request. However, that commit optimized __ublk_fail_req() to call __ublk_complete_rq() directly without decrementing the request reference count. The leaked reference count incorrectly allows user copy and zero copy operations on the completed ublk request. It also triggers the WARN_ON_ONCE(refcount_read(&io->ref)) warnings in ublk_queue_reinit() and ublk_deinit_queue(). Commit c5c5eb24ed61 ("ublk: avoid ublk_io_release() called after ublk char dev is closed") already fixed the issue for ublk devices using UBLK_F_SUPPORT_ZERO_COPY or UBLK_F_AUTO_BUF_REG. However, the reference count leak also affects UBLK_F_USER_COPY, the other reference-counted data copy mode. Fix the condition in ublk_check_and_reset_active_ref() to include all reference-counted data copy modes. This ensures that any ublk requests still owned by the ublk server when it exits have their reference counts reset to 0.
CVE-2025-71067 1 Linux 1 Linux Kernel 2026-01-14 N/A
In the Linux kernel, the following vulnerability has been resolved: ntfs: set dummy blocksize to read boot_block when mounting When mounting, sb->s_blocksize is used to read the boot_block without being defined or validated. Set a dummy blocksize before attempting to read the boot_block. The issue can be triggered with the following syz reproducer: mkdirat(0xffffffffffffff9c, &(0x7f0000000080)='./file1\x00', 0x0) r4 = openat$nullb(0xffffffffffffff9c, &(0x7f0000000040), 0x121403, 0x0) ioctl$FS_IOC_SETFLAGS(r4, 0x40081271, &(0x7f0000000980)=0x4000) mount(&(0x7f0000000140)=@nullb, &(0x7f0000000040)='./cgroup\x00', &(0x7f0000000000)='ntfs3\x00', 0x2208004, 0x0) syz_clone(0x88200200, 0x0, 0x0, 0x0, 0x0, 0x0) Here, the ioctl sets the bdev block size to 16384. During mount, get_tree_bdev_flags() calls sb_set_blocksize(sb, block_size(bdev)), but since block_size(bdev) > PAGE_SIZE, sb_set_blocksize() leaves sb->s_blocksize at zero. Later, ntfs_init_from_boot() attempts to read the boot_block while sb->s_blocksize is still zero, which triggers the bug. [almaz.alexandrovich@paragon-software.com: changed comment style, added return value handling]
CVE-2025-68814 1 Linux 1 Linux Kernel 2026-01-14 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: io_uring: fix filename leak in __io_openat_prep() __io_openat_prep() allocates a struct filename using getname(). However, for the condition of the file being installed in the fixed file table as well as having O_CLOEXEC flag set, the function returns early. At that point, the request doesn't have REQ_F_NEED_CLEANUP flag set. Due to this, the memory for the newly allocated struct filename is not cleaned up, causing a memory leak. Fix this by setting the REQ_F_NEED_CLEANUP for the request just after the successful getname() call, so that when the request is torn down, the filename will be cleaned up, along with other resources needing cleanup.
CVE-2025-68813 1 Linux 1 Linux Kernel 2026-01-14 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ipvs: fix ipv4 null-ptr-deref in route error path The IPv4 code path in __ip_vs_get_out_rt() calls dst_link_failure() without ensuring skb->dev is set, leading to a NULL pointer dereference in fib_compute_spec_dst() when ipv4_link_failure() attempts to send ICMP destination unreachable messages. The issue emerged after commit ed0de45a1008 ("ipv4: recompile ip options in ipv4_link_failure") started calling __ip_options_compile() from ipv4_link_failure(). This code path eventually calls fib_compute_spec_dst() which dereferences skb->dev. An attempt was made to fix the NULL skb->dev dereference in commit 0113d9c9d1cc ("ipv4: fix null-deref in ipv4_link_failure"), but it only addressed the immediate dev_net(skb->dev) dereference by using a fallback device. The fix was incomplete because fib_compute_spec_dst() later in the call chain still accesses skb->dev directly, which remains NULL when IPVS calls dst_link_failure(). The crash occurs when: 1. IPVS processes a packet in NAT mode with a misconfigured destination 2. Route lookup fails in __ip_vs_get_out_rt() before establishing a route 3. The error path calls dst_link_failure(skb) with skb->dev == NULL 4. ipv4_link_failure() → ipv4_send_dest_unreach() → __ip_options_compile() → fib_compute_spec_dst() 5. fib_compute_spec_dst() dereferences NULL skb->dev Apply the same fix used for IPv6 in commit 326bf17ea5d4 ("ipvs: fix ipv6 route unreach panic"): set skb->dev from skb_dst(skb)->dev before calling dst_link_failure(). KASAN: null-ptr-deref in range [0x0000000000000328-0x000000000000032f] CPU: 1 PID: 12732 Comm: syz.1.3469 Not tainted 6.6.114 #2 RIP: 0010:__in_dev_get_rcu include/linux/inetdevice.h:233 RIP: 0010:fib_compute_spec_dst+0x17a/0x9f0 net/ipv4/fib_frontend.c:285 Call Trace: <TASK> spec_dst_fill net/ipv4/ip_options.c:232 spec_dst_fill net/ipv4/ip_options.c:229 __ip_options_compile+0x13a1/0x17d0 net/ipv4/ip_options.c:330 ipv4_send_dest_unreach net/ipv4/route.c:1252 ipv4_link_failure+0x702/0xb80 net/ipv4/route.c:1265 dst_link_failure include/net/dst.h:437 __ip_vs_get_out_rt+0x15fd/0x19e0 net/netfilter/ipvs/ip_vs_xmit.c:412 ip_vs_nat_xmit+0x1d8/0xc80 net/netfilter/ipvs/ip_vs_xmit.c:764
CVE-2025-68798 1 Linux 1 Linux Kernel 2026-01-14 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: perf/x86/amd: Check event before enable to avoid GPF On AMD machines cpuc->events[idx] can become NULL in a subtle race condition with NMI->throttle->x86_pmu_stop(). Check event for NULL in amd_pmu_enable_all() before enable to avoid a GPF. This appears to be an AMD only issue. Syzkaller reported a GPF in amd_pmu_enable_all. INFO: NMI handler (perf_event_nmi_handler) took too long to run: 13.143 msecs Oops: general protection fault, probably for non-canonical address 0xdffffc0000000034: 0000 PREEMPT SMP KASAN NOPTI KASAN: null-ptr-deref in range [0x00000000000001a0-0x00000000000001a7] CPU: 0 UID: 0 PID: 328415 Comm: repro_36674776 Not tainted 6.12.0-rc1-syzk RIP: 0010:x86_pmu_enable_event (arch/x86/events/perf_event.h:1195 arch/x86/events/core.c:1430) RSP: 0018:ffff888118009d60 EFLAGS: 00010012 RAX: dffffc0000000000 RBX: 0000000000000000 RCX: 0000000000000000 RDX: 0000000000000034 RSI: 0000000000000000 RDI: 00000000000001a0 RBP: 0000000000000001 R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000000 R12: 0000000000000002 R13: ffff88811802a440 R14: ffff88811802a240 R15: ffff8881132d8601 FS: 00007f097dfaa700(0000) GS:ffff888118000000(0000) GS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00000000200001c0 CR3: 0000000103d56000 CR4: 00000000000006f0 Call Trace: <IRQ> amd_pmu_enable_all (arch/x86/events/amd/core.c:760 (discriminator 2)) x86_pmu_enable (arch/x86/events/core.c:1360) event_sched_out (kernel/events/core.c:1191 kernel/events/core.c:1186 kernel/events/core.c:2346) __perf_remove_from_context (kernel/events/core.c:2435) event_function (kernel/events/core.c:259) remote_function (kernel/events/core.c:92 (discriminator 1) kernel/events/core.c:72 (discriminator 1)) __flush_smp_call_function_queue (./arch/x86/include/asm/jump_label.h:27 ./include/linux/jump_label.h:207 ./include/trace/events/csd.h:64 kernel/smp.c:135 kernel/smp.c:540) __sysvec_call_function_single (./arch/x86/include/asm/jump_label.h:27 ./include/linux/jump_label.h:207 ./arch/x86/include/asm/trace/irq_vectors.h:99 arch/x86/kernel/smp.c:272) sysvec_call_function_single (arch/x86/kernel/smp.c:266 (discriminator 47) arch/x86/kernel/smp.c:266 (discriminator 47)) </IRQ>
CVE-2025-68793 1 Linux 1 Linux Kernel 2026-01-14 N/A
In the Linux kernel, the following vulnerability has been resolved: drm/amdgpu: fix a job->pasid access race in gpu recovery Avoid a possible UAF in GPU recovery due to a race between the sched timeout callback and the tdr work queue. The gpu recovery function calls drm_sched_stop() and later drm_sched_start(). drm_sched_start() restarts the tdr queue which will eventually free the job. If the tdr queue frees the job before time out callback completes, the job will be freed and we'll get a UAF when accessing the pasid. Cache it early to avoid the UAF. Example KASAN trace: [ 493.058141] BUG: KASAN: slab-use-after-free in amdgpu_device_gpu_recover+0x968/0x990 [amdgpu] [ 493.067530] Read of size 4 at addr ffff88b0ce3f794c by task kworker/u128:1/323 [ 493.074892] [ 493.076485] CPU: 9 UID: 0 PID: 323 Comm: kworker/u128:1 Tainted: G E 6.16.0-1289896.2.zuul.bf4f11df81c1410bbe901c4373305a31 #1 PREEMPT(voluntary) [ 493.076493] Tainted: [E]=UNSIGNED_MODULE [ 493.076495] Hardware name: TYAN B8021G88V2HR-2T/S8021GM2NR-2T, BIOS V1.03.B10 04/01/2019 [ 493.076500] Workqueue: amdgpu-reset-dev drm_sched_job_timedout [gpu_sched] [ 493.076512] Call Trace: [ 493.076515] <TASK> [ 493.076518] dump_stack_lvl+0x64/0x80 [ 493.076529] print_report+0xce/0x630 [ 493.076536] ? _raw_spin_lock_irqsave+0x86/0xd0 [ 493.076541] ? __pfx__raw_spin_lock_irqsave+0x10/0x10 [ 493.076545] ? amdgpu_device_gpu_recover+0x968/0x990 [amdgpu] [ 493.077253] kasan_report+0xb8/0xf0 [ 493.077258] ? amdgpu_device_gpu_recover+0x968/0x990 [amdgpu] [ 493.077965] amdgpu_device_gpu_recover+0x968/0x990 [amdgpu] [ 493.078672] ? __pfx_amdgpu_device_gpu_recover+0x10/0x10 [amdgpu] [ 493.079378] ? amdgpu_coredump+0x1fd/0x4c0 [amdgpu] [ 493.080111] amdgpu_job_timedout+0x642/0x1400 [amdgpu] [ 493.080903] ? pick_task_fair+0x24e/0x330 [ 493.080910] ? __pfx_amdgpu_job_timedout+0x10/0x10 [amdgpu] [ 493.081702] ? _raw_spin_lock+0x75/0xc0 [ 493.081708] ? __pfx__raw_spin_lock+0x10/0x10 [ 493.081712] drm_sched_job_timedout+0x1b0/0x4b0 [gpu_sched] [ 493.081721] ? __pfx__raw_spin_lock_irq+0x10/0x10 [ 493.081725] process_one_work+0x679/0xff0 [ 493.081732] worker_thread+0x6ce/0xfd0 [ 493.081736] ? __pfx_worker_thread+0x10/0x10 [ 493.081739] kthread+0x376/0x730 [ 493.081744] ? __pfx_kthread+0x10/0x10 [ 493.081748] ? __pfx__raw_spin_lock_irq+0x10/0x10 [ 493.081751] ? __pfx_kthread+0x10/0x10 [ 493.081755] ret_from_fork+0x247/0x330 [ 493.081761] ? __pfx_kthread+0x10/0x10 [ 493.081764] ret_from_fork_asm+0x1a/0x30 [ 493.081771] </TASK> (cherry picked from commit 20880a3fd5dd7bca1a079534cf6596bda92e107d)
CVE-2025-68787 1 Linux 1 Linux Kernel 2026-01-14 N/A
In the Linux kernel, the following vulnerability has been resolved: netrom: Fix memory leak in nr_sendmsg() syzbot reported a memory leak [1]. When function sock_alloc_send_skb() return NULL in nr_output(), the original skb is not freed, which was allocated in nr_sendmsg(). Fix this by freeing it before return. [1] BUG: memory leak unreferenced object 0xffff888129f35500 (size 240): comm "syz.0.17", pid 6119, jiffies 4294944652 hex dump (first 32 bytes): 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ 00 00 00 00 00 00 00 00 00 10 52 28 81 88 ff ff ..........R(.... backtrace (crc 1456a3e4): kmemleak_alloc_recursive include/linux/kmemleak.h:44 [inline] slab_post_alloc_hook mm/slub.c:4983 [inline] slab_alloc_node mm/slub.c:5288 [inline] kmem_cache_alloc_node_noprof+0x36f/0x5e0 mm/slub.c:5340 __alloc_skb+0x203/0x240 net/core/skbuff.c:660 alloc_skb include/linux/skbuff.h:1383 [inline] alloc_skb_with_frags+0x69/0x3f0 net/core/skbuff.c:6671 sock_alloc_send_pskb+0x379/0x3e0 net/core/sock.c:2965 sock_alloc_send_skb include/net/sock.h:1859 [inline] nr_sendmsg+0x287/0x450 net/netrom/af_netrom.c:1105 sock_sendmsg_nosec net/socket.c:727 [inline] __sock_sendmsg net/socket.c:742 [inline] sock_write_iter+0x293/0x2a0 net/socket.c:1195 new_sync_write fs/read_write.c:593 [inline] vfs_write+0x45d/0x710 fs/read_write.c:686 ksys_write+0x143/0x170 fs/read_write.c:738 do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline] do_syscall_64+0xa4/0xfa0 arch/x86/entry/syscall_64.c:94 entry_SYSCALL_64_after_hwframe+0x77/0x7f
CVE-2025-68780 1 Linux 1 Linux Kernel 2026-01-14 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: sched/deadline: only set free_cpus for online runqueues Commit 16b269436b72 ("sched/deadline: Modify cpudl::free_cpus to reflect rd->online") introduced the cpudl_set/clear_freecpu functions to allow the cpu_dl::free_cpus mask to be manipulated by the deadline scheduler class rq_on/offline callbacks so the mask would also reflect this state. Commit 9659e1eeee28 ("sched/deadline: Remove cpu_active_mask from cpudl_find()") removed the check of the cpu_active_mask to save some processing on the premise that the cpudl::free_cpus mask already reflected the runqueue online state. Unfortunately, there are cases where it is possible for the cpudl_clear function to set the free_cpus bit for a CPU when the deadline runqueue is offline. When this occurs while a CPU is connected to the default root domain the flag may retain the bad state after the CPU has been unplugged. Later, a different CPU that is transitioning through the default root domain may push a deadline task to the powered down CPU when cpudl_find sees its free_cpus bit is set. If this happens the task will not have the opportunity to run. One example is outlined here: https://lore.kernel.org/lkml/20250110233010.2339521-1-opendmb@gmail.com Another occurs when the last deadline task is migrated from a CPU that has an offlined runqueue. The dequeue_task member of the deadline scheduler class will eventually call cpudl_clear and set the free_cpus bit for the CPU. This commit modifies the cpudl_clear function to be aware of the online state of the deadline runqueue so that the free_cpus mask can be updated appropriately. It is no longer necessary to manage the mask outside of the cpudl_set/clear functions so the cpudl_set/clear_freecpu functions are removed. In addition, since the free_cpus mask is now only updated under the cpudl lock the code was changed to use the non-atomic __cpumask functions.