| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| InDesign Desktop versions ID19.5.2, ID20.2 and earlier are affected by a NULL Pointer Dereference vulnerability that could lead to application denial-of-service. An attacker could exploit this vulnerability to crash the application, causing a disruption in service. Exploitation of this issue requires user interaction in that a victim must open a malicious file. |
| The phones have the heap overflow, out-of-bounds read, and null pointer vulnerabilities in the fingerprint trusted application (TA).Successful exploitation of this vulnerability may affect the fingerprint service. |
| A NULL Pointer Dereference in RT-Labs P-Net version 1.0.1 or earlier allows an attacker to induce a crash in IO devices that use the library by sending a malicious RPC packet. |
| Windows Lightweight Directory Access Protocol (LDAP) Denial of Service Vulnerability |
| When NGINX Plus or NGINX OSS are configured to use the HTTP/3 QUIC module, undisclosed requests can cause NGINX worker processes to terminate.
Note: The HTTP/3 QUIC module is not enabled by default and is considered experimental. For more information, refer to Support for QUIC and HTTP/3 https://nginx.org/en/docs/quic.html .
NOTE: Software versions which have reached End of Technical Support (EoTS) are not evaluated |
| Null pointer dereference vulnerability in the USB HDI driver module
Impact: Successful exploitation of this vulnerability may affect availability. |
| in OpenHarmony v5.0.3 and prior versions allow a local attacker case DOS through NULL pointer dereference. |
| in OpenHarmony v5.0.3 and prior versions allow a local attacker case DOS through NULL pointer dereference. |
| in OpenHarmony v5.0.3 and prior versions allow a local attacker case DOS through NULL pointer dereference. |
| A NULL Pointer Dereference vulnerability in the Packet Forwarding Engine of Juniper Networks Junos OS on SRX Series allows an unauthenticated, network-based attacker to cause a Denial of Service (DoS). On SRX Series If Unified Threat Management (UTM) Enhanced Content Filtering (CF) is enabled and specific transit traffic is processed the PFE will crash and restart. This issue affects Juniper Networks Junos OS: 21.4 versions prior to 21.4R1-S2, 21.4R2 on SRX Series; 22.1 versions prior to 22.1R1-S1, 22.1R2 on SRX Series. This issue does not affect Juniper Networks Junos OS versions prior to 21.4R1. |
| In the Linux kernel, the following vulnerability has been resolved:
usb: xhci: Check for xhci->interrupters being allocated in xhci_mem_clearup()
If xhci_mem_init() fails, it calls into xhci_mem_cleanup() to mop
up the damage. If it fails early enough, before xhci->interrupters
is allocated but after xhci->max_interrupters has been set, which
happens in most (all?) cases, things get uglier, as xhci_mem_cleanup()
unconditionally derefences xhci->interrupters. With prejudice.
Gate the interrupt freeing loop with a check on xhci->interrupters
being non-NULL.
Found while debugging a DMA allocation issue that led the XHCI driver
on this exact path. |
| Bento4 v1.6.0-640 was discovered to contain a NULL pointer dereference via the AP4_DescriptorFinder::Test() function. |
| libheif before 1.19.6 has a NULL pointer dereference in ImageItem_Grid::get_decoder in image-items/grid.cc because a grid image can reference a nonexistent image item. |
| libheif before 1.19.6 has a NULL pointer dereference in ImageItem_iden in image-items/iden.cc. |
| In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: HCI: Fix potential null-ptr-deref
Fix potential null-ptr-deref in hci_le_big_sync_established_evt(). |
| NULL Pointer Dereference vulnerability in openEuler kernel on Linux (network modules) allows Pointer Manipulation. This vulnerability is associated with program files net/sched/sch_cbs.C.
This issue affects openEuler kernel: from 4.19.90 before 4.19.90-2401.3. |
| In the Linux kernel, the following vulnerability has been resolved:
mm: migrate: fix getting incorrect page mapping during page migration
When running stress-ng testing, we found below kernel crash after a few hours:
Unable to handle kernel NULL pointer dereference at virtual address 0000000000000000
pc : dentry_name+0xd8/0x224
lr : pointer+0x22c/0x370
sp : ffff800025f134c0
......
Call trace:
dentry_name+0xd8/0x224
pointer+0x22c/0x370
vsnprintf+0x1ec/0x730
vscnprintf+0x2c/0x60
vprintk_store+0x70/0x234
vprintk_emit+0xe0/0x24c
vprintk_default+0x3c/0x44
vprintk_func+0x84/0x2d0
printk+0x64/0x88
__dump_page+0x52c/0x530
dump_page+0x14/0x20
set_migratetype_isolate+0x110/0x224
start_isolate_page_range+0xc4/0x20c
offline_pages+0x124/0x474
memory_block_offline+0x44/0xf4
memory_subsys_offline+0x3c/0x70
device_offline+0xf0/0x120
......
After analyzing the vmcore, I found this issue is caused by page migration.
The scenario is that, one thread is doing page migration, and we will use the
target page's ->mapping field to save 'anon_vma' pointer between page unmap and
page move, and now the target page is locked and refcount is 1.
Currently, there is another stress-ng thread performing memory hotplug,
attempting to offline the target page that is being migrated. It discovers that
the refcount of this target page is 1, preventing the offline operation, thus
proceeding to dump the page. However, page_mapping() of the target page may
return an incorrect file mapping to crash the system in dump_mapping(), since
the target page->mapping only saves 'anon_vma' pointer without setting
PAGE_MAPPING_ANON flag.
There are seveval ways to fix this issue:
(1) Setting the PAGE_MAPPING_ANON flag for target page's ->mapping when saving
'anon_vma', but this can confuse PageAnon() for PFN walkers, since the target
page has not built mappings yet.
(2) Getting the page lock to call page_mapping() in __dump_page() to avoid crashing
the system, however, there are still some PFN walkers that call page_mapping()
without holding the page lock, such as compaction.
(3) Using target page->private field to save the 'anon_vma' pointer and 2 bits
page state, just as page->mapping records an anonymous page, which can remove
the page_mapping() impact for PFN walkers and also seems a simple way.
So I choose option 3 to fix this issue, and this can also fix other potential
issues for PFN walkers, such as compaction. |
| In the Linux kernel, the following vulnerability has been resolved:
usb: roles: fix NULL pointer issue when put module's reference
In current design, usb role class driver will get usb_role_switch parent's
module reference after the user get usb_role_switch device and put the
reference after the user put the usb_role_switch device. However, the
parent device of usb_role_switch may be removed before the user put the
usb_role_switch. If so, then, NULL pointer issue will be met when the user
put the parent module's reference.
This will save the module pointer in structure of usb_role_switch. Then,
we don't need to find module by iterating long relations. |
| In the Linux kernel, the following vulnerability has been resolved:
s390/qeth: fix NULL deref in qeth_clear_working_pool_list()
When qeth_set_online() calls qeth_clear_working_pool_list() to roll
back after an error exit from qeth_hardsetup_card(), we are at risk of
accessing card->qdio.in_q before it was allocated by
qeth_alloc_qdio_queues() via qeth_mpc_initialize().
qeth_clear_working_pool_list() then dereferences NULL, and by writing to
queue->bufs[i].pool_entry scribbles all over the CPU's lowcore.
Resulting in a crash when those lowcore areas are used next (eg. on
the next machine-check interrupt).
Such a scenario would typically happen when the device is first set
online and its queues aren't allocated yet. An early IO error or certain
misconfigs (eg. mismatched transport mode, bad portno) then cause us to
error out from qeth_hardsetup_card() with card->qdio.in_q still being
NULL.
Fix it by checking the pointer for NULL before accessing it.
Note that we also have (rare) paths inside qeth_mpc_initialize() where
a configuration change can cause us to free the existing queues,
expecting that subsequent code will allocate them again. If we then
error out before that re-allocation happens, the same bug occurs.
Root-caused-by: Heiko Carstens <hca@linux.ibm.com> |
| In the Linux kernel, the following vulnerability has been resolved:
powerpc/pseries/iommu: LPAR panics during boot up with a frozen PE
At the time of LPAR boot up, partition firmware provides Open Firmware
property ibm,dma-window for the PE. This property is provided on the PCI
bus the PE is attached to.
There are execptions where the partition firmware might not provide this
property for the PE at the time of LPAR boot up. One of the scenario is
where the firmware has frozen the PE due to some error condition. This
PE is frozen for 24 hours or unless the whole system is reinitialized.
Within this time frame, if the LPAR is booted, the frozen PE will be
presented to the LPAR but ibm,dma-window property could be missing.
Today, under these circumstances, the LPAR oopses with NULL pointer
dereference, when configuring the PCI bus the PE is attached to.
BUG: Kernel NULL pointer dereference on read at 0x000000c8
Faulting instruction address: 0xc0000000001024c0
Oops: Kernel access of bad area, sig: 7 [#1]
LE PAGE_SIZE=64K MMU=Radix SMP NR_CPUS=2048 NUMA pSeries
Modules linked in:
Supported: Yes
CPU: 0 PID: 1 Comm: swapper/0 Not tainted 6.4.0-150600.9-default #1
Hardware name: IBM,9043-MRX POWER10 (raw) 0x800200 0xf000006 of:IBM,FW1060.00 (NM1060_023) hv:phyp pSeries
NIP: c0000000001024c0 LR: c0000000001024b0 CTR: c000000000102450
REGS: c0000000037db5c0 TRAP: 0300 Not tainted (6.4.0-150600.9-default)
MSR: 8000000002009033 <SF,VEC,EE,ME,IR,DR,RI,LE> CR: 28000822 XER: 00000000
CFAR: c00000000010254c DAR: 00000000000000c8 DSISR: 00080000 IRQMASK: 0
...
NIP [c0000000001024c0] pci_dma_bus_setup_pSeriesLP+0x70/0x2a0
LR [c0000000001024b0] pci_dma_bus_setup_pSeriesLP+0x60/0x2a0
Call Trace:
pci_dma_bus_setup_pSeriesLP+0x60/0x2a0 (unreliable)
pcibios_setup_bus_self+0x1c0/0x370
__of_scan_bus+0x2f8/0x330
pcibios_scan_phb+0x280/0x3d0
pcibios_init+0x88/0x12c
do_one_initcall+0x60/0x320
kernel_init_freeable+0x344/0x3e4
kernel_init+0x34/0x1d0
ret_from_kernel_user_thread+0x14/0x1c |