| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: SCO: Fix not validating setsockopt user input
syzbot reported sco_sock_setsockopt() is copying data without
checking user input length.
BUG: KASAN: slab-out-of-bounds in copy_from_sockptr_offset
include/linux/sockptr.h:49 [inline]
BUG: KASAN: slab-out-of-bounds in copy_from_sockptr
include/linux/sockptr.h:55 [inline]
BUG: KASAN: slab-out-of-bounds in sco_sock_setsockopt+0xc0b/0xf90
net/bluetooth/sco.c:893
Read of size 4 at addr ffff88805f7b15a3 by task syz-executor.5/12578 |
| Out-of-bounds read (CWE-125) allows an unauthenticated remote attacker to perform a buffer overflow (CAPEC-100) via the NFS protocol dissector, leading to a denial-of-service (DoS) through a reliable process crash when handling truncated XDR-encoded RPC messages. |
| A memory corruption vulnerability exists in the 3D annotation handling of Foxit PDF Reader due to insufficient bounds checking when parsing PRC data. When opening a PDF file containing malformed or specially crafted PRC content, out-of-bounds memory access may occur, resulting in memory corruption. |
| A memory corruption vulnerability exists in the 3D annotation handling of Foxit PDF Reader due to insufficient bounds checking when parsing U3D data. When opening a PDF file containing malformed or specially crafted PRC content, out-of-bounds memory access may occur, resulting in memory corruption. |
| A memory corruption vulnerability exists in the 3D annotation handling of Foxit PDF Reader due to insufficient bounds checking when parsing PRC data. When opening a PDF file containing malformed or specially crafted PRC content, out-of-bounds memory access may occur, resulting in memory corruption. |
| Out of bounds read and write in V8 in Google Chrome prior to 143.0.7499.147 allowed a remote attacker to potentially exploit heap corruption via a crafted HTML page. (Chromium security severity: High) |
| In the Linux kernel, the following vulnerability has been resolved:
powercap: intel_rapl: fix UBSAN shift-out-of-bounds issue
When value < time_unit, the parameter of ilog2() will be zero and
the return value is -1. u64(-1) is too large for shift exponent
and then will trigger shift-out-of-bounds:
shift exponent 18446744073709551615 is too large for 32-bit type 'int'
Call Trace:
rapl_compute_time_window_core
rapl_write_data_raw
set_time_window
store_constraint_time_window_us |
| In the Linux kernel, the following vulnerability has been resolved:
fs: jfs: fix shift-out-of-bounds in dbDiscardAG
This should be applied to most URSAN bugs found recently by syzbot,
by guarding the dbMount. As syzbot feeding rubbish into the bmap
descriptor. |
| In the Linux kernel, the following vulnerability has been resolved:
ext4: fix potential out of bound read in ext4_fc_replay_scan()
For scan loop must ensure that at least EXT4_FC_TAG_BASE_LEN space. If remain
space less than EXT4_FC_TAG_BASE_LEN which will lead to out of bound read
when mounting corrupt file system image.
ADD_RANGE/HEAD/TAIL is needed to add extra check when do journal scan, as this
three tags will read data during scan, tag length couldn't less than data length
which will read. |
| In the Linux kernel, the following vulnerability has been resolved:
md-raid10: fix KASAN warning
There's a KASAN warning in raid10_remove_disk when running the lvm
test lvconvert-raid-reshape.sh. We fix this warning by verifying that the
value "number" is valid.
BUG: KASAN: slab-out-of-bounds in raid10_remove_disk+0x61/0x2a0 [raid10]
Read of size 8 at addr ffff889108f3d300 by task mdX_raid10/124682
CPU: 3 PID: 124682 Comm: mdX_raid10 Not tainted 5.19.0-rc6 #1
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.14.0-2 04/01/2014
Call Trace:
<TASK>
dump_stack_lvl+0x34/0x44
print_report.cold+0x45/0x57a
? __lock_text_start+0x18/0x18
? raid10_remove_disk+0x61/0x2a0 [raid10]
kasan_report+0xa8/0xe0
? raid10_remove_disk+0x61/0x2a0 [raid10]
raid10_remove_disk+0x61/0x2a0 [raid10]
Buffer I/O error on dev dm-76, logical block 15344, async page read
? __mutex_unlock_slowpath.constprop.0+0x1e0/0x1e0
remove_and_add_spares+0x367/0x8a0 [md_mod]
? super_written+0x1c0/0x1c0 [md_mod]
? mutex_trylock+0xac/0x120
? _raw_spin_lock+0x72/0xc0
? _raw_spin_lock_bh+0xc0/0xc0
md_check_recovery+0x848/0x960 [md_mod]
raid10d+0xcf/0x3360 [raid10]
? sched_clock_cpu+0x185/0x1a0
? rb_erase+0x4d4/0x620
? var_wake_function+0xe0/0xe0
? psi_group_change+0x411/0x500
? preempt_count_sub+0xf/0xc0
? _raw_spin_lock_irqsave+0x78/0xc0
? __lock_text_start+0x18/0x18
? raid10_sync_request+0x36c0/0x36c0 [raid10]
? preempt_count_sub+0xf/0xc0
? _raw_spin_unlock_irqrestore+0x19/0x40
? del_timer_sync+0xa9/0x100
? try_to_del_timer_sync+0xc0/0xc0
? _raw_spin_lock_irqsave+0x78/0xc0
? __lock_text_start+0x18/0x18
? _raw_spin_unlock_irq+0x11/0x24
? __list_del_entry_valid+0x68/0xa0
? finish_wait+0xa3/0x100
md_thread+0x161/0x260 [md_mod]
? unregister_md_personality+0xa0/0xa0 [md_mod]
? _raw_spin_lock_irqsave+0x78/0xc0
? prepare_to_wait_event+0x2c0/0x2c0
? unregister_md_personality+0xa0/0xa0 [md_mod]
kthread+0x148/0x180
? kthread_complete_and_exit+0x20/0x20
ret_from_fork+0x1f/0x30
</TASK>
Allocated by task 124495:
kasan_save_stack+0x1e/0x40
__kasan_kmalloc+0x80/0xa0
setup_conf+0x140/0x5c0 [raid10]
raid10_run+0x4cd/0x740 [raid10]
md_run+0x6f9/0x1300 [md_mod]
raid_ctr+0x2531/0x4ac0 [dm_raid]
dm_table_add_target+0x2b0/0x620 [dm_mod]
table_load+0x1c8/0x400 [dm_mod]
ctl_ioctl+0x29e/0x560 [dm_mod]
dm_compat_ctl_ioctl+0x7/0x20 [dm_mod]
__do_compat_sys_ioctl+0xfa/0x160
do_syscall_64+0x90/0xc0
entry_SYSCALL_64_after_hwframe+0x46/0xb0
Last potentially related work creation:
kasan_save_stack+0x1e/0x40
__kasan_record_aux_stack+0x9e/0xc0
kvfree_call_rcu+0x84/0x480
timerfd_release+0x82/0x140
L __fput+0xfa/0x400
task_work_run+0x80/0xc0
exit_to_user_mode_prepare+0x155/0x160
syscall_exit_to_user_mode+0x12/0x40
do_syscall_64+0x42/0xc0
entry_SYSCALL_64_after_hwframe+0x46/0xb0
Second to last potentially related work creation:
kasan_save_stack+0x1e/0x40
__kasan_record_aux_stack+0x9e/0xc0
kvfree_call_rcu+0x84/0x480
timerfd_release+0x82/0x140
__fput+0xfa/0x400
task_work_run+0x80/0xc0
exit_to_user_mode_prepare+0x155/0x160
syscall_exit_to_user_mode+0x12/0x40
do_syscall_64+0x42/0xc0
entry_SYSCALL_64_after_hwframe+0x46/0xb0
The buggy address belongs to the object at ffff889108f3d200
which belongs to the cache kmalloc-256 of size 256
The buggy address is located 0 bytes to the right of
256-byte region [ffff889108f3d200, ffff889108f3d300)
The buggy address belongs to the physical page:
page:000000007ef2a34c refcount:1 mapcount:0 mapping:0000000000000000 index:0x0 pfn:0x1108f3c
head:000000007ef2a34c order:2 compound_mapcount:0 compound_pincount:0
flags: 0x4000000000010200(slab|head|zone=2)
raw: 4000000000010200 0000000000000000 dead000000000001 ffff889100042b40
raw: 0000000000000000 0000000080200020 00000001ffffffff 0000000000000000
page dumped because: kasan: bad access detected
Memory state around the buggy address:
ffff889108f3d200: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
ffff889108f3d280: 00 00
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
dm raid: fix address sanitizer warning in raid_status
There is this warning when using a kernel with the address sanitizer
and running this testsuite:
https://gitlab.com/cki-project/kernel-tests/-/tree/main/storage/swraid/scsi_raid
==================================================================
BUG: KASAN: slab-out-of-bounds in raid_status+0x1747/0x2820 [dm_raid]
Read of size 4 at addr ffff888079d2c7e8 by task lvcreate/13319
CPU: 0 PID: 13319 Comm: lvcreate Not tainted 5.18.0-0.rc3.<snip> #1
Hardware name: Red Hat KVM, BIOS 0.5.1 01/01/2011
Call Trace:
<TASK>
dump_stack_lvl+0x6a/0x9c
print_address_description.constprop.0+0x1f/0x1e0
print_report.cold+0x55/0x244
kasan_report+0xc9/0x100
raid_status+0x1747/0x2820 [dm_raid]
dm_ima_measure_on_table_load+0x4b8/0xca0 [dm_mod]
table_load+0x35c/0x630 [dm_mod]
ctl_ioctl+0x411/0x630 [dm_mod]
dm_ctl_ioctl+0xa/0x10 [dm_mod]
__x64_sys_ioctl+0x12a/0x1a0
do_syscall_64+0x5b/0x80
The warning is caused by reading conf->max_nr_stripes in raid_status. The
code in raid_status reads mddev->private, casts it to struct r5conf and
reads the entry max_nr_stripes.
However, if we have different raid type than 4/5/6, mddev->private
doesn't point to struct r5conf; it may point to struct r0conf, struct
r1conf, struct r10conf or struct mpconf. If we cast a pointer to one
of these structs to struct r5conf, we will be reading invalid memory
and KASAN warns about it.
Fix this bug by reading struct r5conf only if raid type is 4, 5 or 6. |
| In the Linux kernel, the following vulnerability has been resolved:
vt: Clear selection before changing the font
When changing the console font with ioctl(KDFONTOP) the new font size
can be bigger than the previous font. A previous selection may thus now
be outside of the new screen size and thus trigger out-of-bounds
accesses to graphics memory if the selection is removed in
vc_do_resize().
Prevent such out-of-memory accesses by dropping the selection before the
various con_font_set() console handlers are called. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: brcmfmac: Check the count value of channel spec to prevent out-of-bounds reads
This patch fixes slab-out-of-bounds reads in brcmfmac that occur in
brcmf_construct_chaninfo() and brcmf_enable_bw40_2g() when the count
value of channel specifications provided by the device is greater than
the length of 'list->element[]', decided by the size of the 'list'
allocated with kzalloc(). The patch adds checks that make the functions
free the buffer and return -EINVAL if that is the case. Note that the
negative return is handled by the caller, brcmf_setup_wiphybands() or
brcmf_cfg80211_attach().
Found by a modified version of syzkaller.
Crash Report from brcmf_construct_chaninfo():
==================================================================
BUG: KASAN: slab-out-of-bounds in brcmf_setup_wiphybands+0x1238/0x1430
Read of size 4 at addr ffff888115f24600 by task kworker/0:2/1896
CPU: 0 PID: 1896 Comm: kworker/0:2 Tainted: G W O 5.14.0+ #132
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.12.1-0-ga5cab58e9a3f-prebuilt.qemu.org 04/01/2014
Workqueue: usb_hub_wq hub_event
Call Trace:
dump_stack_lvl+0x57/0x7d
print_address_description.constprop.0.cold+0x93/0x334
kasan_report.cold+0x83/0xdf
brcmf_setup_wiphybands+0x1238/0x1430
brcmf_cfg80211_attach+0x2118/0x3fd0
brcmf_attach+0x389/0xd40
brcmf_usb_probe+0x12de/0x1690
usb_probe_interface+0x25f/0x710
really_probe+0x1be/0xa90
__driver_probe_device+0x2ab/0x460
driver_probe_device+0x49/0x120
__device_attach_driver+0x18a/0x250
bus_for_each_drv+0x123/0x1a0
__device_attach+0x207/0x330
bus_probe_device+0x1a2/0x260
device_add+0xa61/0x1ce0
usb_set_configuration+0x984/0x1770
usb_generic_driver_probe+0x69/0x90
usb_probe_device+0x9c/0x220
really_probe+0x1be/0xa90
__driver_probe_device+0x2ab/0x460
driver_probe_device+0x49/0x120
__device_attach_driver+0x18a/0x250
bus_for_each_drv+0x123/0x1a0
__device_attach+0x207/0x330
bus_probe_device+0x1a2/0x260
device_add+0xa61/0x1ce0
usb_new_device.cold+0x463/0xf66
hub_event+0x10d5/0x3330
process_one_work+0x873/0x13e0
worker_thread+0x8b/0xd10
kthread+0x379/0x450
ret_from_fork+0x1f/0x30
Allocated by task 1896:
kasan_save_stack+0x1b/0x40
__kasan_kmalloc+0x7c/0x90
kmem_cache_alloc_trace+0x19e/0x330
brcmf_setup_wiphybands+0x290/0x1430
brcmf_cfg80211_attach+0x2118/0x3fd0
brcmf_attach+0x389/0xd40
brcmf_usb_probe+0x12de/0x1690
usb_probe_interface+0x25f/0x710
really_probe+0x1be/0xa90
__driver_probe_device+0x2ab/0x460
driver_probe_device+0x49/0x120
__device_attach_driver+0x18a/0x250
bus_for_each_drv+0x123/0x1a0
__device_attach+0x207/0x330
bus_probe_device+0x1a2/0x260
device_add+0xa61/0x1ce0
usb_set_configuration+0x984/0x1770
usb_generic_driver_probe+0x69/0x90
usb_probe_device+0x9c/0x220
really_probe+0x1be/0xa90
__driver_probe_device+0x2ab/0x460
driver_probe_device+0x49/0x120
__device_attach_driver+0x18a/0x250
bus_for_each_drv+0x123/0x1a0
__device_attach+0x207/0x330
bus_probe_device+0x1a2/0x260
device_add+0xa61/0x1ce0
usb_new_device.cold+0x463/0xf66
hub_event+0x10d5/0x3330
process_one_work+0x873/0x13e0
worker_thread+0x8b/0xd10
kthread+0x379/0x450
ret_from_fork+0x1f/0x30
The buggy address belongs to the object at ffff888115f24000
which belongs to the cache kmalloc-2k of size 2048
The buggy address is located 1536 bytes inside of
2048-byte region [ffff888115f24000, ffff888115f24800)
Memory state around the buggy address:
ffff888115f24500: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
ffff888115f24580: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
>ffff888115f24600: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc
^
ffff888115f24680: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc
ffff888115f24700: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc
==================================================================
Crash Report from brcmf_enable_bw40_2g():
==========
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
dm raid: fix accesses beyond end of raid member array
On dm-raid table load (using raid_ctr), dm-raid allocates an array
rs->devs[rs->raid_disks] for the raid device members. rs->raid_disks
is defined by the number of raid metadata and image tupples passed
into the target's constructor.
In the case of RAID layout changes being requested, that number can be
different from the current number of members for existing raid sets as
defined in their superblocks. Example RAID layout changes include:
- raid1 legs being added/removed
- raid4/5/6/10 number of stripes changed (stripe reshaping)
- takeover to higher raid level (e.g. raid5 -> raid6)
When accessing array members, rs->raid_disks must be used in control
loops instead of the potentially larger value in rs->md.raid_disks.
Otherwise it will cause memory access beyond the end of the rs->devs
array.
Fix this by changing code that is prone to out-of-bounds access.
Also fix validate_raid_redundancy() to validate all devices that are
added. Also, use braces to help clean up raid_iterate_devices().
The out-of-bounds memory accesses was discovered using KASAN.
This commit was verified to pass all LVM2 RAID tests (with KASAN
enabled). |
| In the Linux kernel, the following vulnerability has been resolved:
powerpc/xive/spapr: correct bitmap allocation size
kasan detects access beyond the end of the xibm->bitmap allocation:
BUG: KASAN: slab-out-of-bounds in _find_first_zero_bit+0x40/0x140
Read of size 8 at addr c00000001d1d0118 by task swapper/0/1
CPU: 0 PID: 1 Comm: swapper/0 Not tainted 5.19.0-rc2-00001-g90df023b36dd #28
Call Trace:
[c00000001d98f770] [c0000000012baab8] dump_stack_lvl+0xac/0x108 (unreliable)
[c00000001d98f7b0] [c00000000068faac] print_report+0x37c/0x710
[c00000001d98f880] [c0000000006902c0] kasan_report+0x110/0x354
[c00000001d98f950] [c000000000692324] __asan_load8+0xa4/0xe0
[c00000001d98f970] [c0000000011c6ed0] _find_first_zero_bit+0x40/0x140
[c00000001d98f9b0] [c0000000000dbfbc] xive_spapr_get_ipi+0xcc/0x260
[c00000001d98fa70] [c0000000000d6d28] xive_setup_cpu_ipi+0x1e8/0x450
[c00000001d98fb30] [c000000004032a20] pSeries_smp_probe+0x5c/0x118
[c00000001d98fb60] [c000000004018b44] smp_prepare_cpus+0x944/0x9ac
[c00000001d98fc90] [c000000004009f9c] kernel_init_freeable+0x2d4/0x640
[c00000001d98fd90] [c0000000000131e8] kernel_init+0x28/0x1d0
[c00000001d98fe10] [c00000000000cd54] ret_from_kernel_thread+0x5c/0x64
Allocated by task 0:
kasan_save_stack+0x34/0x70
__kasan_kmalloc+0xb4/0xf0
__kmalloc+0x268/0x540
xive_spapr_init+0x4d0/0x77c
pseries_init_irq+0x40/0x27c
init_IRQ+0x44/0x84
start_kernel+0x2a4/0x538
start_here_common+0x1c/0x20
The buggy address belongs to the object at c00000001d1d0118
which belongs to the cache kmalloc-8 of size 8
The buggy address is located 0 bytes inside of
8-byte region [c00000001d1d0118, c00000001d1d0120)
The buggy address belongs to the physical page:
page:c00c000000074740 refcount:1 mapcount:0 mapping:0000000000000000 index:0xc00000001d1d0558 pfn:0x1d1d
flags: 0x7ffff000000200(slab|node=0|zone=0|lastcpupid=0x7ffff)
raw: 007ffff000000200 c00000001d0003c8 c00000001d0003c8 c00000001d010480
raw: c00000001d1d0558 0000000001e1000a 00000001ffffffff 0000000000000000
page dumped because: kasan: bad access detected
Memory state around the buggy address:
c00000001d1d0000: fc 00 fc fc fc fc fc fc fc fc fc fc fc fc fc fc
c00000001d1d0080: fc fc 00 fc fc fc fc fc fc fc fc fc fc fc fc fc
>c00000001d1d0100: fc fc fc 02 fc fc fc fc fc fc fc fc fc fc fc fc
^
c00000001d1d0180: fc fc fc fc 04 fc fc fc fc fc fc fc fc fc fc fc
c00000001d1d0200: fc fc fc fc fc 04 fc fc fc fc fc fc fc fc fc fc
This happens because the allocation uses the wrong unit (bits) when it
should pass (BITS_TO_LONGS(count) * sizeof(long)) or equivalent. With small
numbers of bits, the allocated object can be smaller than sizeof(long),
which results in invalid accesses.
Use bitmap_zalloc() to allocate and initialize the irq bitmap, paired with
bitmap_free() for consistency. |
| In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: hci_core: Fix leaking sent_cmd skb
sent_cmd memory is not freed before freeing hci_dev causing it to leak
it contents. |
| In the Linux kernel, the following vulnerability has been resolved:
NFSD: Fix the behavior of READ near OFFSET_MAX
Dan Aloni reports:
> Due to commit 8cfb9015280d ("NFS: Always provide aligned buffers to
> the RPC read layers") on the client, a read of 0xfff is aligned up
> to server rsize of 0x1000.
>
> As a result, in a test where the server has a file of size
> 0x7fffffffffffffff, and the client tries to read from the offset
> 0x7ffffffffffff000, the read causes loff_t overflow in the server
> and it returns an NFS code of EINVAL to the client. The client as
> a result indefinitely retries the request.
The Linux NFS client does not handle NFS?ERR_INVAL, even though all
NFS specifications permit servers to return that status code for a
READ.
Instead of NFS?ERR_INVAL, have out-of-range READ requests succeed
and return a short result. Set the EOF flag in the result to prevent
the client from retrying the READ request. This behavior appears to
be consistent with Solaris NFS servers.
Note that NFSv3 and NFSv4 use u64 offset values on the wire. These
must be converted to loff_t internally before use -- an implicit
type cast is not adequate for this purpose. Otherwise VFS checks
against sb->s_maxbytes do not work properly. |
| In the Linux kernel, the following vulnerability has been resolved:
ASoC: ops: Reject out of bounds values in snd_soc_put_volsw()
We don't currently validate that the values being set are within the range
we advertised to userspace as being valid, do so and reject any values
that are out of range. |
| In the Linux kernel, the following vulnerability has been resolved:
ALSA: usb-audio: Fix an out-of-bounds bug in __snd_usb_parse_audio_interface()
There may be a bad USB audio device with a USB ID of (0x04fa, 0x4201) and
the number of it's interfaces less than 4, an out-of-bounds read bug occurs
when parsing the interface descriptor for this device.
Fix this by checking the number of interfaces. |
| A flaw was found in util-linux. This vulnerability allows a heap buffer overread when processing 256-byte usernames, specifically within the `setpwnam()` function, affecting SUID (Set User ID) login-utils utilities writing to the password database. |