| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| Apache HTTP Server versions 2.4.20 to 2.4.43 When trace/debug was enabled for the HTTP/2 module and on certain traffic edge patterns, logging statements were made on the wrong connection, causing concurrent use of memory pools. Configuring the LogLevel of mod_http2 above "info" will mitigate this vulnerability for unpatched servers. |
| A Untrusted Search Path vulnerability in openldap2 of openSUSE Factory allows local attackers with control of the ldap user or group to change ownership of arbitrary directory entries to this user/group, leading to escalation to root. This issue affects: openSUSE Factory openldap2 versions prior to 2.6.3-404.1. |
| The implementation of realpath in libuv < 10.22.1, < 12.18.4, and < 14.9.0 used within Node.js incorrectly determined the buffer size which can result in a buffer overflow if the resolved path is longer than 256 bytes. |
| Node.js < 12.18.4 and < 14.11 can be exploited to perform HTTP desync attacks and deliver malicious payloads to unsuspecting users. The payloads can be crafted by an attacker to hijack user sessions, poison cookies, perform clickjacking, and a multitude of other attacks depending on the architecture of the underlying system. The attack was possible due to a bug in processing of carrier-return symbols in the HTTP header names. |
| Including trailing white space in HTTP header values in Nodejs 10, 12, and 13 causes bypass of authorization based on header value comparisons |
| HTTP request smuggling in Node.js 10, 12, and 13 causes malicious payload delivery when transfer-encoding is malformed |
| Improper Certificate Validation in Node.js 10, 12, and 13 causes the process to abort when sending a crafted X.509 certificate |
| An integer overflow flaw which could lead to an out of bounds write was discovered in libssh2 before 1.8.1 in the way SSH_MSG_CHANNEL_REQUEST packets with an exit signal are parsed. A remote attacker who compromises a SSH server may be able to execute code on the client system when a user connects to the server. |
| An integer overflow flaw, which could lead to an out of bounds write, was discovered in libssh2 before 1.8.1 in the way keyboard prompt requests are parsed. A remote attacker who compromises a SSH server may be able to execute code on the client system when a user connects to the server. |
| Stack-based buffer overflow in dnsmasq before 2.78 allows remote attackers to cause a denial of service (crash) or execute arbitrary code via a crafted DHCPv6 request. |
| Array index error in the scanstring function in the _json module in Python 2.7 through 3.5 and simplejson before 2.6.1 allows context-dependent attackers to read arbitrary process memory via a negative index value in the idx argument to the raw_decode function. |
| The SuSEfirewall2 package before 3.6.312-2.13.1 in SUSE Linux Enterprise (SLE) Desktop 12 SP2, Server 12 SP2, and Server for Raspberry Pi 12 SP2; before 3.6.312.333-3.10.1 in SLE Desktop 12 SP3 and Server 12 SP3; before 3.6_SVNr208-2.18.3.1 in SLE Server 11 SP4; before 3.6.312-5.9.1 in openSUSE Leap 42.2; and before 3.6.312.333-7.1 in openSUSE Leap 42.3 might allow remote attackers to bypass intended access restrictions on the portmap service by leveraging a missing source net restriction for _rpc_ services. |
| Wi-Fi Protected Access (WPA and WPA2) that support 802.11v allows reinstallation of the Integrity Group Temporal Key (IGTK) when processing a Wireless Network Management (WNM) Sleep Mode Response frame, allowing an attacker within radio range to replay frames from access points to clients. |
| Heap-based buffer overflow in dnsmasq before 2.78 allows remote attackers to cause a denial of service (crash) or execute arbitrary code via a crafted DNS response. |
| contrib/slapd-modules/nops/nops.c in OpenLDAP through 2.4.45, when both the nops module and the memberof overlay are enabled, attempts to free a buffer that was allocated on the stack, which allows remote attackers to cause a denial of service (slapd crash) via a member MODDN operation. |
| Wi-Fi Protected Access (WPA and WPA2) allows reinstallation of the Station-To-Station-Link (STSL) Transient Key (STK) during the PeerKey handshake, allowing an attacker within radio range to replay, decrypt, or spoof frames. |
| Wi-Fi Protected Access (WPA and WPA2) that supports IEEE 802.11r allows reinstallation of the Pairwise Transient Key (PTK) Temporal Key (TK) during the fast BSS transmission (FT) handshake, allowing an attacker within radio range to replay, decrypt, or spoof frames. |
| Wi-Fi Protected Access (WPA and WPA2) allows reinstallation of the Tunneled Direct-Link Setup (TDLS) Peer Key (TPK) during the TDLS handshake, allowing an attacker within radio range to replay, decrypt, or spoof frames. |
| Wi-Fi Protected Access (WPA and WPA2) allows reinstallation of the Group Temporal Key (GTK) during the four-way handshake, allowing an attacker within radio range to replay frames from access points to clients. |
| Wi-Fi Protected Access (WPA and WPA2) allows reinstallation of the Group Temporal Key (GTK) during the group key handshake, allowing an attacker within radio range to replay frames from access points to clients. |