Search Results (2099 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2024-35947 4 Debian, Fedoraproject, Linux and 1 more 5 Debian Linux, Fedora, Linux Kernel and 2 more 2026-01-05 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: dyndbg: fix old BUG_ON in >control parser Fix a BUG_ON from 2009. Even if it looks "unreachable" (I didn't really look), lets make sure by removing it, doing pr_err and return -EINVAL instead.
CVE-2024-35944 3 Debian, Linux, Redhat 4 Debian Linux, Linux Kernel, Enterprise Linux and 1 more 2026-01-05 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: VMCI: Fix memcpy() run-time warning in dg_dispatch_as_host() Syzkaller hit 'WARNING in dg_dispatch_as_host' bug. memcpy: detected field-spanning write (size 56) of single field "&dg_info->msg" at drivers/misc/vmw_vmci/vmci_datagram.c:237 (size 24) WARNING: CPU: 0 PID: 1555 at drivers/misc/vmw_vmci/vmci_datagram.c:237 dg_dispatch_as_host+0x88e/0xa60 drivers/misc/vmw_vmci/vmci_datagram.c:237 Some code commentry, based on my understanding: 544 #define VMCI_DG_SIZE(_dg) (VMCI_DG_HEADERSIZE + (size_t)(_dg)->payload_size) /// This is 24 + payload_size memcpy(&dg_info->msg, dg, dg_size); Destination = dg_info->msg ---> this is a 24 byte structure(struct vmci_datagram) Source = dg --> this is a 24 byte structure (struct vmci_datagram) Size = dg_size = 24 + payload_size {payload_size = 56-24 =32} -- Syzkaller managed to set payload_size to 32. 35 struct delayed_datagram_info { 36 struct datagram_entry *entry; 37 struct work_struct work; 38 bool in_dg_host_queue; 39 /* msg and msg_payload must be together. */ 40 struct vmci_datagram msg; 41 u8 msg_payload[]; 42 }; So those extra bytes of payload are copied into msg_payload[], a run time warning is seen while fuzzing with Syzkaller. One possible way to fix the warning is to split the memcpy() into two parts -- one -- direct assignment of msg and second taking care of payload. Gustavo quoted: "Under FORTIFY_SOURCE we should not copy data across multiple members in a structure."
CVE-2024-35940 2 Debian, Linux 2 Debian Linux, Linux Kernel 2026-01-05 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: pstore/zone: Add a null pointer check to the psz_kmsg_read kasprintf() returns a pointer to dynamically allocated memory which can be NULL upon failure. Ensure the allocation was successful by checking the pointer validity.
CVE-2024-35936 2 Debian, Linux 2 Debian Linux, Linux Kernel 2026-01-05 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: btrfs: handle chunk tree lookup error in btrfs_relocate_sys_chunks() The unhandled case in btrfs_relocate_sys_chunks() loop is a corruption, as it could be caused only by two impossible conditions: - at first the search key is set up to look for a chunk tree item, with offset -1, this is an inexact search and the key->offset will contain the correct offset upon a successful search, a valid chunk tree item cannot have an offset -1 - after first successful search, the found_key corresponds to a chunk item, the offset is decremented by 1 before the next loop, it's impossible to find a chunk item there due to alignment and size constraints
CVE-2024-35935 2 Debian, Linux 2 Debian Linux, Linux Kernel 2026-01-05 3.3 Low
In the Linux kernel, the following vulnerability has been resolved: btrfs: send: handle path ref underflow in header iterate_inode_ref() Change BUG_ON to proper error handling if building the path buffer fails. The pointers are not printed so we don't accidentally leak kernel addresses.
CVE-2024-35934 3 Debian, Linux, Redhat 3 Debian Linux, Linux Kernel, Enterprise Linux 2026-01-05 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: net/smc: reduce rtnl pressure in smc_pnet_create_pnetids_list() Many syzbot reports show extreme rtnl pressure, and many of them hint that smc acquires rtnl in netns creation for no good reason [1] This patch returns early from smc_pnet_net_init() if there is no netdevice yet. I am not even sure why smc_pnet_create_pnetids_list() even exists, because smc_pnet_netdev_event() is also calling smc_pnet_add_base_pnetid() when handling NETDEV_UP event. [1] extract of typical syzbot reports 2 locks held by syz-executor.3/12252: #0: ffffffff8f369610 (pernet_ops_rwsem){++++}-{3:3}, at: copy_net_ns+0x4c7/0x7b0 net/core/net_namespace.c:491 #1: ffffffff8f375b88 (rtnl_mutex){+.+.}-{3:3}, at: smc_pnet_create_pnetids_list net/smc/smc_pnet.c:809 [inline] #1: ffffffff8f375b88 (rtnl_mutex){+.+.}-{3:3}, at: smc_pnet_net_init+0x10a/0x1e0 net/smc/smc_pnet.c:878 2 locks held by syz-executor.4/12253: #0: ffffffff8f369610 (pernet_ops_rwsem){++++}-{3:3}, at: copy_net_ns+0x4c7/0x7b0 net/core/net_namespace.c:491 #1: ffffffff8f375b88 (rtnl_mutex){+.+.}-{3:3}, at: smc_pnet_create_pnetids_list net/smc/smc_pnet.c:809 [inline] #1: ffffffff8f375b88 (rtnl_mutex){+.+.}-{3:3}, at: smc_pnet_net_init+0x10a/0x1e0 net/smc/smc_pnet.c:878 2 locks held by syz-executor.1/12257: #0: ffffffff8f369610 (pernet_ops_rwsem){++++}-{3:3}, at: copy_net_ns+0x4c7/0x7b0 net/core/net_namespace.c:491 #1: ffffffff8f375b88 (rtnl_mutex){+.+.}-{3:3}, at: smc_pnet_create_pnetids_list net/smc/smc_pnet.c:809 [inline] #1: ffffffff8f375b88 (rtnl_mutex){+.+.}-{3:3}, at: smc_pnet_net_init+0x10a/0x1e0 net/smc/smc_pnet.c:878 2 locks held by syz-executor.2/12261: #0: ffffffff8f369610 (pernet_ops_rwsem){++++}-{3:3}, at: copy_net_ns+0x4c7/0x7b0 net/core/net_namespace.c:491 #1: ffffffff8f375b88 (rtnl_mutex){+.+.}-{3:3}, at: smc_pnet_create_pnetids_list net/smc/smc_pnet.c:809 [inline] #1: ffffffff8f375b88 (rtnl_mutex){+.+.}-{3:3}, at: smc_pnet_net_init+0x10a/0x1e0 net/smc/smc_pnet.c:878 2 locks held by syz-executor.0/12265: #0: ffffffff8f369610 (pernet_ops_rwsem){++++}-{3:3}, at: copy_net_ns+0x4c7/0x7b0 net/core/net_namespace.c:491 #1: ffffffff8f375b88 (rtnl_mutex){+.+.}-{3:3}, at: smc_pnet_create_pnetids_list net/smc/smc_pnet.c:809 [inline] #1: ffffffff8f375b88 (rtnl_mutex){+.+.}-{3:3}, at: smc_pnet_net_init+0x10a/0x1e0 net/smc/smc_pnet.c:878 2 locks held by syz-executor.3/12268: #0: ffffffff8f369610 (pernet_ops_rwsem){++++}-{3:3}, at: copy_net_ns+0x4c7/0x7b0 net/core/net_namespace.c:491 #1: ffffffff8f375b88 (rtnl_mutex){+.+.}-{3:3}, at: smc_pnet_create_pnetids_list net/smc/smc_pnet.c:809 [inline] #1: ffffffff8f375b88 (rtnl_mutex){+.+.}-{3:3}, at: smc_pnet_net_init+0x10a/0x1e0 net/smc/smc_pnet.c:878 2 locks held by syz-executor.4/12271: #0: ffffffff8f369610 (pernet_ops_rwsem){++++}-{3:3}, at: copy_net_ns+0x4c7/0x7b0 net/core/net_namespace.c:491 #1: ffffffff8f375b88 (rtnl_mutex){+.+.}-{3:3}, at: smc_pnet_create_pnetids_list net/smc/smc_pnet.c:809 [inline] #1: ffffffff8f375b88 (rtnl_mutex){+.+.}-{3:3}, at: smc_pnet_net_init+0x10a/0x1e0 net/smc/smc_pnet.c:878 2 locks held by syz-executor.1/12274: #0: ffffffff8f369610 (pernet_ops_rwsem){++++}-{3:3}, at: copy_net_ns+0x4c7/0x7b0 net/core/net_namespace.c:491 #1: ffffffff8f375b88 (rtnl_mutex){+.+.}-{3:3}, at: smc_pnet_create_pnetids_list net/smc/smc_pnet.c:809 [inline] #1: ffffffff8f375b88 (rtnl_mutex){+.+.}-{3:3}, at: smc_pnet_net_init+0x10a/0x1e0 net/smc/smc_pnet.c:878 2 locks held by syz-executor.2/12280: #0: ffffffff8f369610 (pernet_ops_rwsem){++++}-{3:3}, at: copy_net_ns+0x4c7/0x7b0 net/core/net_namespace.c:491 #1: ffffffff8f375b88 (rtnl_mutex){+.+.}-{3:3}, at: smc_pnet_create_pnetids_list net/smc/smc_pnet.c:809 [inline] #1: ffffffff8f375b88 (rtnl_mutex){+.+.}-{3:3}, at: smc_pnet_net_init+0x10a/0x1e0 net/smc/smc_pnet.c:878
CVE-2024-35925 3 Debian, Linux, Redhat 4 Debian Linux, Linux Kernel, Enterprise Linux and 1 more 2026-01-05 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: block: prevent division by zero in blk_rq_stat_sum() The expression dst->nr_samples + src->nr_samples may have zero value on overflow. It is necessary to add a check to avoid division by zero. Found by Linux Verification Center (linuxtesting.org) with Svace.
CVE-2024-35922 2 Debian, Linux 2 Debian Linux, Linux Kernel 2026-01-05 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: fbmon: prevent division by zero in fb_videomode_from_videomode() The expression htotal * vtotal can have a zero value on overflow. It is necessary to prevent division by zero like in fb_var_to_videomode(). Found by Linux Verification Center (linuxtesting.org) with Svace.
CVE-2024-35867 3 Debian, Linux, Redhat 3 Debian Linux, Linux Kernel, Enterprise Linux 2026-01-05 7.8 High
In the Linux kernel, the following vulnerability has been resolved: smb: client: fix potential UAF in cifs_stats_proc_show() Skip sessions that are being teared down (status == SES_EXITING) to avoid UAF.
CVE-2024-35866 3 Debian, Linux, Redhat 3 Debian Linux, Linux Kernel, Enterprise Linux 2026-01-05 7.8 High
In the Linux kernel, the following vulnerability has been resolved: smb: client: fix potential UAF in cifs_dump_full_key() Skip sessions that are being teared down (status == SES_EXITING) to avoid UAF.
CVE-2024-35849 2 Debian, Linux 2 Debian Linux, Linux Kernel 2026-01-05 7.1 High
In the Linux kernel, the following vulnerability has been resolved: btrfs: fix information leak in btrfs_ioctl_logical_to_ino() Syzbot reported the following information leak for in btrfs_ioctl_logical_to_ino(): BUG: KMSAN: kernel-infoleak in instrument_copy_to_user include/linux/instrumented.h:114 [inline] BUG: KMSAN: kernel-infoleak in _copy_to_user+0xbc/0x110 lib/usercopy.c:40 instrument_copy_to_user include/linux/instrumented.h:114 [inline] _copy_to_user+0xbc/0x110 lib/usercopy.c:40 copy_to_user include/linux/uaccess.h:191 [inline] btrfs_ioctl_logical_to_ino+0x440/0x750 fs/btrfs/ioctl.c:3499 btrfs_ioctl+0x714/0x1260 vfs_ioctl fs/ioctl.c:51 [inline] __do_sys_ioctl fs/ioctl.c:904 [inline] __se_sys_ioctl+0x261/0x450 fs/ioctl.c:890 __x64_sys_ioctl+0x96/0xe0 fs/ioctl.c:890 x64_sys_call+0x1883/0x3b50 arch/x86/include/generated/asm/syscalls_64.h:17 do_syscall_x64 arch/x86/entry/common.c:52 [inline] do_syscall_64+0xcf/0x1e0 arch/x86/entry/common.c:83 entry_SYSCALL_64_after_hwframe+0x77/0x7f Uninit was created at: __kmalloc_large_node+0x231/0x370 mm/slub.c:3921 __do_kmalloc_node mm/slub.c:3954 [inline] __kmalloc_node+0xb07/0x1060 mm/slub.c:3973 kmalloc_node include/linux/slab.h:648 [inline] kvmalloc_node+0xc0/0x2d0 mm/util.c:634 kvmalloc include/linux/slab.h:766 [inline] init_data_container+0x49/0x1e0 fs/btrfs/backref.c:2779 btrfs_ioctl_logical_to_ino+0x17c/0x750 fs/btrfs/ioctl.c:3480 btrfs_ioctl+0x714/0x1260 vfs_ioctl fs/ioctl.c:51 [inline] __do_sys_ioctl fs/ioctl.c:904 [inline] __se_sys_ioctl+0x261/0x450 fs/ioctl.c:890 __x64_sys_ioctl+0x96/0xe0 fs/ioctl.c:890 x64_sys_call+0x1883/0x3b50 arch/x86/include/generated/asm/syscalls_64.h:17 do_syscall_x64 arch/x86/entry/common.c:52 [inline] do_syscall_64+0xcf/0x1e0 arch/x86/entry/common.c:83 entry_SYSCALL_64_after_hwframe+0x77/0x7f Bytes 40-65535 of 65536 are uninitialized Memory access of size 65536 starts at ffff888045a40000 This happens, because we're copying a 'struct btrfs_data_container' back to user-space. This btrfs_data_container is allocated in 'init_data_container()' via kvmalloc(), which does not zero-fill the memory. Fix this by using kvzalloc() which zeroes out the memory on allocation.
CVE-2024-35822 3 Debian, Linux, Redhat 3 Debian Linux, Linux Kernel, Enterprise Linux 2026-01-05 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: usb: udc: remove warning when queue disabled ep It is possible trigger below warning message from mass storage function, WARNING: CPU: 6 PID: 3839 at drivers/usb/gadget/udc/core.c:294 usb_ep_queue+0x7c/0x104 pc : usb_ep_queue+0x7c/0x104 lr : fsg_main_thread+0x494/0x1b3c Root cause is mass storage function try to queue request from main thread, but other thread may already disable ep when function disable. As there is no function failure in the driver, in order to avoid effort to fix warning, change WARN_ON_ONCE() in usb_ep_queue() to pr_debug().
CVE-2024-35809 3 Debian, Linux, Redhat 4 Debian Linux, Linux Kernel, Enterprise Linux and 1 more 2026-01-05 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: PCI/PM: Drain runtime-idle callbacks before driver removal A race condition between the .runtime_idle() callback and the .remove() callback in the rtsx_pcr PCI driver leads to a kernel crash due to an unhandled page fault [1]. The problem is that rtsx_pci_runtime_idle() is not expected to be running after pm_runtime_get_sync() has been called, but the latter doesn't really guarantee that. It only guarantees that the suspend and resume callbacks will not be running when it returns. However, if a .runtime_idle() callback is already running when pm_runtime_get_sync() is called, the latter will notice that the runtime PM status of the device is RPM_ACTIVE and it will return right away without waiting for the former to complete. In fact, it cannot wait for .runtime_idle() to complete because it may be called from that callback (it arguably does not make much sense to do that, but it is not strictly prohibited). Thus in general, whoever is providing a .runtime_idle() callback needs to protect it from running in parallel with whatever code runs after pm_runtime_get_sync(). [Note that .runtime_idle() will not start after pm_runtime_get_sync() has returned, but it may continue running then if it has started earlier.] One way to address that race condition is to call pm_runtime_barrier() after pm_runtime_get_sync() (not before it, because a nonzero value of the runtime PM usage counter is necessary to prevent runtime PM callbacks from being invoked) to wait for the .runtime_idle() callback to complete should it be running at that point. A suitable place for doing that is in pci_device_remove() which calls pm_runtime_get_sync() before removing the driver, so it may as well call pm_runtime_barrier() subsequently, which will prevent the race in question from occurring, not just in the rtsx_pcr driver, but in any PCI drivers providing .runtime_idle() callbacks.
CVE-2024-35805 3 Debian, Linux, Redhat 3 Debian Linux, Linux Kernel, Enterprise Linux 2026-01-05 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: dm snapshot: fix lockup in dm_exception_table_exit There was reported lockup when we exit a snapshot with many exceptions. Fix this by adding "cond_resched" to the loop that frees the exceptions.
CVE-2024-26957 2 Debian, Linux 2 Debian Linux, Linux Kernel 2026-01-05 7.8 High
In the Linux kernel, the following vulnerability has been resolved: s390/zcrypt: fix reference counting on zcrypt card objects Tests with hot-plugging crytpo cards on KVM guests with debug kernel build revealed an use after free for the load field of the struct zcrypt_card. The reason was an incorrect reference handling of the zcrypt card object which could lead to a free of the zcrypt card object while it was still in use. This is an example of the slab message: kernel: 0x00000000885a7512-0x00000000885a7513 @offset=1298. First byte 0x68 instead of 0x6b kernel: Allocated in zcrypt_card_alloc+0x36/0x70 [zcrypt] age=18046 cpu=3 pid=43 kernel: kmalloc_trace+0x3f2/0x470 kernel: zcrypt_card_alloc+0x36/0x70 [zcrypt] kernel: zcrypt_cex4_card_probe+0x26/0x380 [zcrypt_cex4] kernel: ap_device_probe+0x15c/0x290 kernel: really_probe+0xd2/0x468 kernel: driver_probe_device+0x40/0xf0 kernel: __device_attach_driver+0xc0/0x140 kernel: bus_for_each_drv+0x8c/0xd0 kernel: __device_attach+0x114/0x198 kernel: bus_probe_device+0xb4/0xc8 kernel: device_add+0x4d2/0x6e0 kernel: ap_scan_adapter+0x3d0/0x7c0 kernel: ap_scan_bus+0x5a/0x3b0 kernel: ap_scan_bus_wq_callback+0x40/0x60 kernel: process_one_work+0x26e/0x620 kernel: worker_thread+0x21c/0x440 kernel: Freed in zcrypt_card_put+0x54/0x80 [zcrypt] age=9024 cpu=3 pid=43 kernel: kfree+0x37e/0x418 kernel: zcrypt_card_put+0x54/0x80 [zcrypt] kernel: ap_device_remove+0x4c/0xe0 kernel: device_release_driver_internal+0x1c4/0x270 kernel: bus_remove_device+0x100/0x188 kernel: device_del+0x164/0x3c0 kernel: device_unregister+0x30/0x90 kernel: ap_scan_adapter+0xc8/0x7c0 kernel: ap_scan_bus+0x5a/0x3b0 kernel: ap_scan_bus_wq_callback+0x40/0x60 kernel: process_one_work+0x26e/0x620 kernel: worker_thread+0x21c/0x440 kernel: kthread+0x150/0x168 kernel: __ret_from_fork+0x3c/0x58 kernel: ret_from_fork+0xa/0x30 kernel: Slab 0x00000372022169c0 objects=20 used=18 fp=0x00000000885a7c88 flags=0x3ffff00000000a00(workingset|slab|node=0|zone=1|lastcpupid=0x1ffff) kernel: Object 0x00000000885a74b8 @offset=1208 fp=0x00000000885a7c88 kernel: Redzone 00000000885a74b0: bb bb bb bb bb bb bb bb ........ kernel: Object 00000000885a74b8: 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b kkkkkkkkkkkkkkkk kernel: Object 00000000885a74c8: 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b kkkkkkkkkkkkkkkk kernel: Object 00000000885a74d8: 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b kkkkkkkkkkkkkkkk kernel: Object 00000000885a74e8: 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b kkkkkkkkkkkkkkkk kernel: Object 00000000885a74f8: 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b kkkkkkkkkkkkkkkk kernel: Object 00000000885a7508: 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 68 4b 6b 6b 6b a5 kkkkkkkkkkhKkkk. kernel: Redzone 00000000885a7518: bb bb bb bb bb bb bb bb ........ kernel: Padding 00000000885a756c: 5a 5a 5a 5a 5a 5a 5a 5a 5a 5a 5a 5a ZZZZZZZZZZZZ kernel: CPU: 0 PID: 387 Comm: systemd-udevd Not tainted 6.8.0-HF #2 kernel: Hardware name: IBM 3931 A01 704 (KVM/Linux) kernel: Call Trace: kernel: [<00000000ca5ab5b8>] dump_stack_lvl+0x90/0x120 kernel: [<00000000c99d78bc>] check_bytes_and_report+0x114/0x140 kernel: [<00000000c99d53cc>] check_object+0x334/0x3f8 kernel: [<00000000c99d820c>] alloc_debug_processing+0xc4/0x1f8 kernel: [<00000000c99d852e>] get_partial_node.part.0+0x1ee/0x3e0 kernel: [<00000000c99d94ec>] ___slab_alloc+0xaf4/0x13c8 kernel: [<00000000c99d9e38>] __slab_alloc.constprop.0+0x78/0xb8 kernel: [<00000000c99dc8dc>] __kmalloc+0x434/0x590 kernel: [<00000000c9b4c0ce>] ext4_htree_store_dirent+0x4e/0x1c0 kernel: [<00000000c9b908a2>] htree_dirblock_to_tree+0x17a/0x3f0 kernel: ---truncated---
CVE-2024-26928 3 Debian, Linux, Redhat 3 Debian Linux, Linux Kernel, Enterprise Linux 2026-01-05 7.8 High
In the Linux kernel, the following vulnerability has been resolved: smb: client: fix potential UAF in cifs_debug_files_proc_show() Skip sessions that are being teared down (status == SES_EXITING) to avoid UAF.
CVE-2024-26906 3 Debian, Linux, Redhat 4 Debian Linux, Linux Kernel, Enterprise Linux and 1 more 2026-01-05 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: x86/mm: Disallow vsyscall page read for copy_from_kernel_nofault() When trying to use copy_from_kernel_nofault() to read vsyscall page through a bpf program, the following oops was reported: BUG: unable to handle page fault for address: ffffffffff600000 #PF: supervisor read access in kernel mode #PF: error_code(0x0000) - not-present page PGD 3231067 P4D 3231067 PUD 3233067 PMD 3235067 PTE 0 Oops: 0000 [#1] PREEMPT SMP PTI CPU: 1 PID: 20390 Comm: test_progs ...... 6.7.0+ #58 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996) ...... RIP: 0010:copy_from_kernel_nofault+0x6f/0x110 ...... Call Trace: <TASK> ? copy_from_kernel_nofault+0x6f/0x110 bpf_probe_read_kernel+0x1d/0x50 bpf_prog_2061065e56845f08_do_probe_read+0x51/0x8d trace_call_bpf+0xc5/0x1c0 perf_call_bpf_enter.isra.0+0x69/0xb0 perf_syscall_enter+0x13e/0x200 syscall_trace_enter+0x188/0x1c0 do_syscall_64+0xb5/0xe0 entry_SYSCALL_64_after_hwframe+0x6e/0x76 </TASK> ...... ---[ end trace 0000000000000000 ]--- The oops is triggered when: 1) A bpf program uses bpf_probe_read_kernel() to read from the vsyscall page and invokes copy_from_kernel_nofault() which in turn calls __get_user_asm(). 2) Because the vsyscall page address is not readable from kernel space, a page fault exception is triggered accordingly. 3) handle_page_fault() considers the vsyscall page address as a user space address instead of a kernel space address. This results in the fix-up setup by bpf not being applied and a page_fault_oops() is invoked due to SMAP. Considering handle_page_fault() has already considered the vsyscall page address as a userspace address, fix the problem by disallowing vsyscall page read for copy_from_kernel_nofault().
CVE-2024-26878 3 Debian, Linux, Redhat 3 Debian Linux, Linux Kernel, Enterprise Linux 2026-01-05 4.7 Medium
In the Linux kernel, the following vulnerability has been resolved: quota: Fix potential NULL pointer dereference Below race may cause NULL pointer dereference P1 P2 dquot_free_inode quota_off drop_dquot_ref remove_dquot_ref dquots = i_dquot(inode) dquots = i_dquot(inode) srcu_read_lock dquots[cnt]) != NULL (1) dquots[type] = NULL (2) spin_lock(&dquots[cnt]->dq_dqb_lock) (3) .... If dquot_free_inode(or other routines) checks inode's quota pointers (1) before quota_off sets it to NULL(2) and use it (3) after that, NULL pointer dereference will be triggered. So let's fix it by using a temporary pointer to avoid this issue.
CVE-2024-26846 3 Debian, Linux, Redhat 4 Debian Linux, Linux Kernel, Enterprise Linux and 1 more 2026-01-05 4.4 Medium
In the Linux kernel, the following vulnerability has been resolved: nvme-fc: do not wait in vain when unloading module The module exit path has race between deleting all controllers and freeing 'left over IDs'. To prevent double free a synchronization between nvme_delete_ctrl and ida_destroy has been added by the initial commit. There is some logic around trying to prevent from hanging forever in wait_for_completion, though it does not handling all cases. E.g. blktests is able to reproduce the situation where the module unload hangs forever. If we completely rely on the cleanup code executed from the nvme_delete_ctrl path, all IDs will be freed eventually. This makes calling ida_destroy unnecessary. We only have to ensure that all nvme_delete_ctrl code has been executed before we leave nvme_fc_exit_module. This is done by flushing the nvme_delete_wq workqueue. While at it, remove the unused nvme_fc_wq workqueue too.
CVE-2024-26779 3 Debian, Linux, Redhat 4 Debian Linux, Linux Kernel, Enterprise Linux and 1 more 2026-01-05 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: wifi: mac80211: fix race condition on enabling fast-xmit fast-xmit must only be enabled after the sta has been uploaded to the driver, otherwise it could end up passing the not-yet-uploaded sta via drv_tx calls to the driver, leading to potential crashes because of uninitialized drv_priv data. Add a missing sta->uploaded check and re-check fast xmit after inserting a sta.