| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
dm clone: Fix UAF in clone_dtr()
Dm_clone also has the same UAF problem when dm_resume()
and dm_destroy() are concurrent.
Therefore, cancelling timer again in clone_dtr(). |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: iwlwifi: mei: fix potential NULL-ptr deref after clone
If cloning the SKB fails, don't try to use it, but rather return
as if we should pass it.
Coverity CID: 1503456 |
| In the Linux kernel, the following vulnerability has been resolved:
tpm: tpm_tis: Add the missed acpi_put_table() to fix memory leak
In check_acpi_tpm2(), we get the TPM2 table just to make
sure the table is there, not used after the init, so the
acpi_put_table() should be added to release the ACPI memory. |
| In the Linux kernel, the following vulnerability has been resolved:
mmc: toshsd: fix return value check of mmc_add_host()
mmc_add_host() may return error, if we ignore its return value, the memory
that allocated in mmc_alloc_host() will be leaked and it will lead a kernel
crash because of deleting not added device in the remove path.
So fix this by checking the return value and goto error path which will call
mmc_free_host(), besides, free_irq() also needs be called. |
| In the Linux kernel, the following vulnerability has been resolved:
media: s5p-mfc: Clear workbit to handle error condition
During error on CLOSE_INSTANCE command, ctx_work_bits was not getting
cleared. During consequent mfc execution NULL pointer dereferencing of
this context led to kernel panic. This patch fixes this issue by making
sure to clear ctx_work_bits always. |
| In the Linux kernel, the following vulnerability has been resolved:
clk: tegra: Fix refcount leak in tegra114_clock_init
of_find_matching_node() returns a node pointer with refcount
incremented, we should use of_node_put() on it when not need anymore.
Add missing of_node_put() to avoid refcount leak. |
| In the Linux kernel, the following vulnerability has been resolved:
pstore: Avoid kcore oops by vmap()ing with VM_IOREMAP
An oops can be induced by running 'cat /proc/kcore > /dev/null' on
devices using pstore with the ram backend because kmap_atomic() assumes
lowmem pages are accessible with __va().
Unable to handle kernel paging request at virtual address ffffff807ff2b000
Mem abort info:
ESR = 0x96000006
EC = 0x25: DABT (current EL), IL = 32 bits
SET = 0, FnV = 0
EA = 0, S1PTW = 0
FSC = 0x06: level 2 translation fault
Data abort info:
ISV = 0, ISS = 0x00000006
CM = 0, WnR = 0
swapper pgtable: 4k pages, 39-bit VAs, pgdp=0000000081d87000
[ffffff807ff2b000] pgd=180000017fe18003, p4d=180000017fe18003, pud=180000017fe18003, pmd=0000000000000000
Internal error: Oops: 96000006 [#1] PREEMPT SMP
Modules linked in: dm_integrity
CPU: 7 PID: 21179 Comm: perf Not tainted 5.15.67-10882-ge4eb2eb988cd #1 baa443fb8e8477896a370b31a821eb2009f9bfba
Hardware name: Google Lazor (rev3 - 8) (DT)
pstate: a0400009 (NzCv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--)
pc : __memcpy+0x110/0x260
lr : vread+0x194/0x294
sp : ffffffc013ee39d0
x29: ffffffc013ee39f0 x28: 0000000000001000 x27: ffffff807ff2b000
x26: 0000000000001000 x25: ffffffc0085a2000 x24: ffffff802d4b3000
x23: ffffff80f8a60000 x22: ffffff802d4b3000 x21: ffffffc0085a2000
x20: ffffff8080b7bc68 x19: 0000000000001000 x18: 0000000000000000
x17: 0000000000000000 x16: 0000000000000000 x15: ffffffd3073f2e60
x14: ffffffffad588000 x13: 0000000000000000 x12: 0000000000000001
x11: 00000000000001a2 x10: 00680000fff2bf0b x9 : 03fffffff807ff2b
x8 : 0000000000000001 x7 : 0000000000000000 x6 : 0000000000000000
x5 : ffffff802d4b4000 x4 : ffffff807ff2c000 x3 : ffffffc013ee3a78
x2 : 0000000000001000 x1 : ffffff807ff2b000 x0 : ffffff802d4b3000
Call trace:
__memcpy+0x110/0x260
read_kcore+0x584/0x778
proc_reg_read+0xb4/0xe4
During early boot, memblock reserves the pages for the ramoops reserved
memory node in DT that would otherwise be part of the direct lowmem
mapping. Pstore's ram backend reuses those reserved pages to change the
memory type (writeback or non-cached) by passing the pages to vmap()
(see pfn_to_page() usage in persistent_ram_vmap() for more details) with
specific flags. When read_kcore() starts iterating over the vmalloc
region, it runs over the virtual address that vmap() returned for
ramoops. In aligned_vread() the virtual address is passed to
vmalloc_to_page() which returns the page struct for the reserved lowmem
area. That lowmem page is passed to kmap_atomic(), which effectively
calls page_to_virt() that assumes a lowmem page struct must be directly
accessible with __va() and friends. These pages are mapped via vmap()
though, and the lowmem mapping was never made, so accessing them via the
lowmem virtual address oopses like above.
Let's side-step this problem by passing VM_IOREMAP to vmap(). This will
tell vread() to not include the ramoops region in the kcore. Instead the
area will look like a bunch of zeros. The alternative is to teach kmap()
about vmalloc areas that intersect with lowmem. Presumably such a change
isn't a one-liner, and there isn't much interest in inspecting the
ramoops region in kcore files anyway, so the most expedient route is
taken for now. |
| In the Linux kernel, the following vulnerability has been resolved:
vdpa/vp_vdpa: fix kfree a wrong pointer in vp_vdpa_remove
In vp_vdpa_remove(), the code kfree(&vp_vdpa_mgtdev->mgtdev.id_table) uses
a reference of pointer as the argument of kfree, which is the wrong pointer
and then may hit crash like this:
Unable to handle kernel paging request at virtual address 00ffff003363e30c
Internal error: Oops: 96000004 [#1] SMP
Call trace:
rb_next+0x20/0x5c
ext4_readdir+0x494/0x5c4 [ext4]
iterate_dir+0x168/0x1b4
__se_sys_getdents64+0x68/0x170
__arm64_sys_getdents64+0x24/0x30
el0_svc_common.constprop.0+0x7c/0x1bc
do_el0_svc+0x2c/0x94
el0_svc+0x20/0x30
el0_sync_handler+0xb0/0xb4
el0_sync+0x160/0x180
Code: 54000220 f9400441 b4000161 aa0103e0 (f9400821)
SMP: stopping secondary CPUs
Starting crashdump kernel... |
| In the Linux kernel, the following vulnerability has been resolved:
bpf: prevent leak of lsm program after failed attach
In [0], we added the ability to bpf_prog_attach LSM programs to cgroups,
but in our validation to make sure the prog is meant to be attached to
BPF_LSM_CGROUP, we return too early if the check fails. This results in
lack of decrementing prog's refcnt (through bpf_prog_put)
leaving the LSM program alive past the point of the expected lifecycle.
This fix allows for the decrement to take place.
[0] https://lore.kernel.org/all/20220628174314.1216643-4-sdf@google.com/ |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: ipr: Fix WARNING in ipr_init()
ipr_init() will not call unregister_reboot_notifier() when
pci_register_driver() fails, which causes a WARNING. Call
unregister_reboot_notifier() when pci_register_driver() fails.
notifier callback ipr_halt [ipr] already registered
WARNING: CPU: 3 PID: 299 at kernel/notifier.c:29
notifier_chain_register+0x16d/0x230
Modules linked in: ipr(+) xhci_pci_renesas xhci_hcd ehci_hcd usbcore
led_class gpu_sched drm_buddy video wmi drm_ttm_helper ttm
drm_display_helper drm_kms_helper drm drm_panel_orientation_quirks
agpgart cfbft
CPU: 3 PID: 299 Comm: modprobe Tainted: G W
6.1.0-rc1-00190-g39508d23b672-dirty #332
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS
rel-1.15.0-0-g2dd4b9b3f840-prebuilt.qemu.org 04/01/2014
RIP: 0010:notifier_chain_register+0x16d/0x230
Call Trace:
<TASK>
__blocking_notifier_chain_register+0x73/0xb0
ipr_init+0x30/0x1000 [ipr]
do_one_initcall+0xdb/0x480
do_init_module+0x1cf/0x680
load_module+0x6a50/0x70a0
__do_sys_finit_module+0x12f/0x1c0
do_syscall_64+0x3f/0x90
entry_SYSCALL_64_after_hwframe+0x63/0xcd |
| In the Linux kernel, the following vulnerability has been resolved:
pinctrl: stm32: Fix refcount leak in stm32_pctrl_get_irq_domain
of_irq_find_parent() returns a node pointer with refcount incremented,
We should use of_node_put() on it when not needed anymore.
Add missing of_node_put() to avoid refcount leak. |
| In the Linux kernel, the following vulnerability has been resolved:
cifs: Fix xid leak in cifs_ses_add_channel()
Before return, should free the xid, otherwise, the
xid will be leaked. |
| In the Linux kernel, the following vulnerability has been resolved:
drivers: dio: fix possible memory leak in dio_init()
If device_register() returns error, the 'dev' and name needs be
freed. Add a release function, and then call put_device() in the
error path, so the name is freed in kobject_cleanup() and to the
'dev' is freed in release function. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/i915: fix race condition UAF in i915_perf_add_config_ioctl
Userspace can guess the id value and try to race oa_config object creation
with config remove, resulting in a use-after-free if we dereference the
object after unlocking the metrics_lock. For that reason, unlocking the
metrics_lock must be done after we are done dereferencing the object.
[tursulin: Manually added stable tag.]
(cherry picked from commit 49f6f6483b652108bcb73accd0204a464b922395) |
| In the Linux kernel, the following vulnerability has been resolved:
RDMA/erdma: Fix refcount leak in erdma_mmap
rdma_user_mmap_entry_get() take reference, we should release it when not
need anymore, add the missing rdma_user_mmap_entry_put() in the error
path to fix it. |
| In the Linux kernel, the following vulnerability has been resolved:
net/sched: flower: fix filter idr initialization
The cited commit moved idr initialization too early in fl_change() which
allows concurrent users to access the filter that is still being
initialized and is in inconsistent state, which, in turn, can cause NULL
pointer dereference [0]. Since there is no obvious way to fix the ordering
without reverting the whole cited commit, alternative approach taken to
first insert NULL pointer into idr in order to allocate the handle but
still cause fl_get() to return NULL and prevent concurrent users from
seeing the filter while providing miss-to-action infrastructure with valid
handle id early in fl_change().
[ 152.434728] general protection fault, probably for non-canonical address 0xdffffc0000000000: 0000 [#1] SMP KASAN
[ 152.436163] KASAN: null-ptr-deref in range [0x0000000000000000-0x0000000000000007]
[ 152.437269] CPU: 4 PID: 3877 Comm: tc Not tainted 6.3.0-rc4+ #5
[ 152.438110] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014
[ 152.439644] RIP: 0010:fl_dump_key+0x8b/0x1d10 [cls_flower]
[ 152.440461] Code: 01 f2 02 f2 c7 40 08 04 f2 04 f2 c7 40 0c 04 f3 f3 f3 65 48 8b 04 25 28 00 00 00 48 89 84 24 00 01 00 00 48 89 c8 48 c1 e8 03 <0f> b6 04 10 84 c0 74 08 3c 03 0f 8e 98 19 00 00 8b 13 85 d2 74 57
[ 152.442885] RSP: 0018:ffff88817a28f158 EFLAGS: 00010246
[ 152.443851] RAX: 0000000000000000 RBX: 0000000000000000 RCX: 0000000000000000
[ 152.444826] RDX: dffffc0000000000 RSI: ffffffff8500ae80 RDI: ffff88810a987900
[ 152.445791] RBP: ffff888179d88240 R08: ffff888179d8845c R09: ffff888179d88240
[ 152.446780] R10: ffffed102f451e48 R11: 00000000fffffff2 R12: ffff88810a987900
[ 152.447741] R13: ffffffff8500ae80 R14: ffff88810a987900 R15: ffff888149b3c738
[ 152.448756] FS: 00007f5eb2a34800(0000) GS:ffff88881ec00000(0000) knlGS:0000000000000000
[ 152.449888] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 152.450685] CR2: 000000000046ad19 CR3: 000000010b0bd006 CR4: 0000000000370ea0
[ 152.451641] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[ 152.452628] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
[ 152.453588] Call Trace:
[ 152.454032] <TASK>
[ 152.454447] ? netlink_sendmsg+0x7a1/0xcb0
[ 152.455109] ? sock_sendmsg+0xc5/0x190
[ 152.455689] ? ____sys_sendmsg+0x535/0x6b0
[ 152.456320] ? ___sys_sendmsg+0xeb/0x170
[ 152.456916] ? do_syscall_64+0x3d/0x90
[ 152.457529] ? entry_SYSCALL_64_after_hwframe+0x46/0xb0
[ 152.458321] ? ___sys_sendmsg+0xeb/0x170
[ 152.458958] ? __sys_sendmsg+0xb5/0x140
[ 152.459564] ? do_syscall_64+0x3d/0x90
[ 152.460122] ? entry_SYSCALL_64_after_hwframe+0x46/0xb0
[ 152.460852] ? fl_dump_key_options.part.0+0xea0/0xea0 [cls_flower]
[ 152.461710] ? _raw_spin_lock+0x7a/0xd0
[ 152.462299] ? _raw_read_lock_irq+0x30/0x30
[ 152.462924] ? nla_put+0x15e/0x1c0
[ 152.463480] fl_dump+0x228/0x650 [cls_flower]
[ 152.464112] ? fl_tmplt_dump+0x210/0x210 [cls_flower]
[ 152.464854] ? __kmem_cache_alloc_node+0x1a7/0x330
[ 152.465592] ? nla_put+0x15e/0x1c0
[ 152.466160] tcf_fill_node+0x515/0x9a0
[ 152.466766] ? tc_setup_offload_action+0xf0/0xf0
[ 152.467463] ? __alloc_skb+0x13c/0x2a0
[ 152.468067] ? __build_skb_around+0x330/0x330
[ 152.468814] ? fl_get+0x107/0x1a0 [cls_flower]
[ 152.469503] tc_del_tfilter+0x718/0x1330
[ 152.470115] ? is_bpf_text_address+0xa/0x20
[ 152.470765] ? tc_ctl_chain+0xee0/0xee0
[ 152.471335] ? __kernel_text_address+0xe/0x30
[ 152.471948] ? unwind_get_return_address+0x56/0xa0
[ 152.472639] ? __thaw_task+0x150/0x150
[ 152.473218] ? arch_stack_walk+0x98/0xf0
[ 152.473839] ? __stack_depot_save+0x35/0x4c0
[ 152.474501] ? stack_trace_save+0x91/0xc0
[ 152.475119] ? security_capable+0x51/0x90
[ 152.475741] rtnetlink_rcv_msg+0x2c1/0x9d0
[ 152.476387] ? rtnl_calcit.isra.0+0x2b0/0x2b0
[ 152.477042]
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
usb: typec: wusb3801: fix fwnode refcount leak in wusb3801_probe()
I got the following report while doing fault injection test:
OF: ERROR: memory leak, expected refcount 1 instead of 4,
of_node_get()/of_node_put() unbalanced - destroy cset entry:
attach overlay node /i2c/tcpc@60/connector
If wusb3801_hw_init() fails, fwnode_handle_put() needs be called to
avoid refcount leak. |
| In the Linux kernel, the following vulnerability has been resolved:
rapidio: devices: fix missing put_device in mport_cdev_open
When kfifo_alloc fails, the refcount of chdev->dev is left incremental.
We should use put_device(&chdev->dev) to decrease the ref count of
chdev->dev to avoid refcount leak. |
| In the Linux kernel, the following vulnerability has been resolved:
dm integrity: Fix UAF in dm_integrity_dtr()
Dm_integrity also has the same UAF problem when dm_resume()
and dm_destroy() are concurrent.
Therefore, cancelling timer again in dm_integrity_dtr(). |
| In the Linux kernel, the following vulnerability has been resolved:
nfc: virtual_ncidev: Fix memory leak in virtual_nci_send()
skb should be free in virtual_nci_send(), otherwise kmemleak will report
memleak.
Steps for reproduction (simulated in qemu):
cd tools/testing/selftests/nci
make
./nci_dev
BUG: memory leak
unreferenced object 0xffff888107588000 (size 208):
comm "nci_dev", pid 206, jiffies 4294945376 (age 368.248s)
hex dump (first 32 bytes):
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
backtrace:
[<000000008d94c8fd>] __alloc_skb+0x1da/0x290
[<00000000278bc7f8>] nci_send_cmd+0xa3/0x350
[<0000000081256a22>] nci_reset_req+0x6b/0xa0
[<000000009e721112>] __nci_request+0x90/0x250
[<000000005d556e59>] nci_dev_up+0x217/0x5b0
[<00000000e618ce62>] nfc_dev_up+0x114/0x220
[<00000000981e226b>] nfc_genl_dev_up+0x94/0xe0
[<000000009bb03517>] genl_family_rcv_msg_doit.isra.14+0x228/0x2d0
[<00000000b7f8c101>] genl_rcv_msg+0x35c/0x640
[<00000000c94075ff>] netlink_rcv_skb+0x11e/0x350
[<00000000440cfb1e>] genl_rcv+0x24/0x40
[<0000000062593b40>] netlink_unicast+0x43f/0x640
[<000000001d0b13cc>] netlink_sendmsg+0x73a/0xbf0
[<000000003272487f>] __sys_sendto+0x324/0x370
[<00000000ef9f1747>] __x64_sys_sendto+0xdd/0x1b0
[<000000001e437841>] do_syscall_64+0x3f/0x90 |