| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
smb: client: fix potential UAF in is_valid_oplock_break()
Skip sessions that are being teared down (status == SES_EXITING) to
avoid UAF. |
| In the Linux kernel, the following vulnerability has been resolved:
smb: client: fix potential UAF in smb2_is_network_name_deleted()
Skip sessions that are being teared down (status == SES_EXITING) to
avoid UAF. |
| In the Linux kernel, the following vulnerability has been resolved:
smb: client: fix potential UAF in cifs_signal_cifsd_for_reconnect()
Skip sessions that are being teared down (status == SES_EXITING) to
avoid UAF. |
| In the Linux kernel, the following vulnerability has been resolved:
btrfs: fix information leak in btrfs_ioctl_logical_to_ino()
Syzbot reported the following information leak for in
btrfs_ioctl_logical_to_ino():
BUG: KMSAN: kernel-infoleak in instrument_copy_to_user include/linux/instrumented.h:114 [inline]
BUG: KMSAN: kernel-infoleak in _copy_to_user+0xbc/0x110 lib/usercopy.c:40
instrument_copy_to_user include/linux/instrumented.h:114 [inline]
_copy_to_user+0xbc/0x110 lib/usercopy.c:40
copy_to_user include/linux/uaccess.h:191 [inline]
btrfs_ioctl_logical_to_ino+0x440/0x750 fs/btrfs/ioctl.c:3499
btrfs_ioctl+0x714/0x1260
vfs_ioctl fs/ioctl.c:51 [inline]
__do_sys_ioctl fs/ioctl.c:904 [inline]
__se_sys_ioctl+0x261/0x450 fs/ioctl.c:890
__x64_sys_ioctl+0x96/0xe0 fs/ioctl.c:890
x64_sys_call+0x1883/0x3b50 arch/x86/include/generated/asm/syscalls_64.h:17
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0xcf/0x1e0 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x77/0x7f
Uninit was created at:
__kmalloc_large_node+0x231/0x370 mm/slub.c:3921
__do_kmalloc_node mm/slub.c:3954 [inline]
__kmalloc_node+0xb07/0x1060 mm/slub.c:3973
kmalloc_node include/linux/slab.h:648 [inline]
kvmalloc_node+0xc0/0x2d0 mm/util.c:634
kvmalloc include/linux/slab.h:766 [inline]
init_data_container+0x49/0x1e0 fs/btrfs/backref.c:2779
btrfs_ioctl_logical_to_ino+0x17c/0x750 fs/btrfs/ioctl.c:3480
btrfs_ioctl+0x714/0x1260
vfs_ioctl fs/ioctl.c:51 [inline]
__do_sys_ioctl fs/ioctl.c:904 [inline]
__se_sys_ioctl+0x261/0x450 fs/ioctl.c:890
__x64_sys_ioctl+0x96/0xe0 fs/ioctl.c:890
x64_sys_call+0x1883/0x3b50 arch/x86/include/generated/asm/syscalls_64.h:17
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0xcf/0x1e0 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x77/0x7f
Bytes 40-65535 of 65536 are uninitialized
Memory access of size 65536 starts at ffff888045a40000
This happens, because we're copying a 'struct btrfs_data_container' back
to user-space. This btrfs_data_container is allocated in
'init_data_container()' via kvmalloc(), which does not zero-fill the
memory.
Fix this by using kvzalloc() which zeroes out the memory on allocation. |
| In the Linux kernel, the following vulnerability has been resolved:
usb: gadget: f_ncm: Fix UAF ncm object at re-bind after usb ep transport error
When ncm function is working and then stop usb0 interface for link down,
eth_stop() is called. At this piont, accidentally if usb transport error
should happen in usb_ep_enable(), 'in_ep' and/or 'out_ep' may not be enabled.
After that, ncm_disable() is called to disable for ncm unbind
but gether_disconnect() is never called since 'in_ep' is not enabled.
As the result, ncm object is released in ncm unbind
but 'dev->port_usb' associated to 'ncm->port' is not NULL.
And when ncm bind again to recover netdev, ncm object is reallocated
but usb0 interface is already associated to previous released ncm object.
Therefore, once usb0 interface is up and eth_start_xmit() is called,
released ncm object is dereferrenced and it might cause use-after-free memory.
[function unlink via configfs]
usb0: eth_stop dev->port_usb=ffffff9b179c3200
--> error happens in usb_ep_enable().
NCM: ncm_disable: ncm=ffffff9b179c3200
--> no gether_disconnect() since ncm->port.in_ep->enabled is false.
NCM: ncm_unbind: ncm unbind ncm=ffffff9b179c3200
NCM: ncm_free: ncm free ncm=ffffff9b179c3200 <-- released ncm
[function link via configfs]
NCM: ncm_alloc: ncm alloc ncm=ffffff9ac4f8a000
NCM: ncm_bind: ncm bind ncm=ffffff9ac4f8a000
NCM: ncm_set_alt: ncm=ffffff9ac4f8a000 alt=0
usb0: eth_open dev->port_usb=ffffff9b179c3200 <-- previous released ncm
usb0: eth_start dev->port_usb=ffffff9b179c3200 <--
eth_start_xmit()
--> dev->wrap()
Unable to handle kernel paging request at virtual address dead00000000014f
This patch addresses the issue by checking if 'ncm->netdev' is not NULL at
ncm_disable() to call gether_disconnect() to deassociate 'dev->port_usb'.
It's more reasonable to check 'ncm->netdev' to call gether_connect/disconnect
rather than check 'ncm->port.in_ep->enabled' since it might not be enabled
but the gether connection might be established. |
| In the Linux kernel, the following vulnerability has been resolved:
Squashfs: check the inode number is not the invalid value of zero
Syskiller has produced an out of bounds access in fill_meta_index().
That out of bounds access is ultimately caused because the inode
has an inode number with the invalid value of zero, which was not checked.
The reason this causes the out of bounds access is due to following
sequence of events:
1. Fill_meta_index() is called to allocate (via empty_meta_index())
and fill a metadata index. It however suffers a data read error
and aborts, invalidating the newly returned empty metadata index.
It does this by setting the inode number of the index to zero,
which means unused (zero is not a valid inode number).
2. When fill_meta_index() is subsequently called again on another
read operation, locate_meta_index() returns the previous index
because it matches the inode number of 0. Because this index
has been returned it is expected to have been filled, and because
it hasn't been, an out of bounds access is performed.
This patch adds a sanity check which checks that the inode number
is not zero when the inode is created and returns -EINVAL if it is.
[phillip@squashfs.org.uk: whitespace fix] |
| In the Linux kernel, the following vulnerability has been resolved:
s390/zcrypt: fix reference counting on zcrypt card objects
Tests with hot-plugging crytpo cards on KVM guests with debug
kernel build revealed an use after free for the load field of
the struct zcrypt_card. The reason was an incorrect reference
handling of the zcrypt card object which could lead to a free
of the zcrypt card object while it was still in use.
This is an example of the slab message:
kernel: 0x00000000885a7512-0x00000000885a7513 @offset=1298. First byte 0x68 instead of 0x6b
kernel: Allocated in zcrypt_card_alloc+0x36/0x70 [zcrypt] age=18046 cpu=3 pid=43
kernel: kmalloc_trace+0x3f2/0x470
kernel: zcrypt_card_alloc+0x36/0x70 [zcrypt]
kernel: zcrypt_cex4_card_probe+0x26/0x380 [zcrypt_cex4]
kernel: ap_device_probe+0x15c/0x290
kernel: really_probe+0xd2/0x468
kernel: driver_probe_device+0x40/0xf0
kernel: __device_attach_driver+0xc0/0x140
kernel: bus_for_each_drv+0x8c/0xd0
kernel: __device_attach+0x114/0x198
kernel: bus_probe_device+0xb4/0xc8
kernel: device_add+0x4d2/0x6e0
kernel: ap_scan_adapter+0x3d0/0x7c0
kernel: ap_scan_bus+0x5a/0x3b0
kernel: ap_scan_bus_wq_callback+0x40/0x60
kernel: process_one_work+0x26e/0x620
kernel: worker_thread+0x21c/0x440
kernel: Freed in zcrypt_card_put+0x54/0x80 [zcrypt] age=9024 cpu=3 pid=43
kernel: kfree+0x37e/0x418
kernel: zcrypt_card_put+0x54/0x80 [zcrypt]
kernel: ap_device_remove+0x4c/0xe0
kernel: device_release_driver_internal+0x1c4/0x270
kernel: bus_remove_device+0x100/0x188
kernel: device_del+0x164/0x3c0
kernel: device_unregister+0x30/0x90
kernel: ap_scan_adapter+0xc8/0x7c0
kernel: ap_scan_bus+0x5a/0x3b0
kernel: ap_scan_bus_wq_callback+0x40/0x60
kernel: process_one_work+0x26e/0x620
kernel: worker_thread+0x21c/0x440
kernel: kthread+0x150/0x168
kernel: __ret_from_fork+0x3c/0x58
kernel: ret_from_fork+0xa/0x30
kernel: Slab 0x00000372022169c0 objects=20 used=18 fp=0x00000000885a7c88 flags=0x3ffff00000000a00(workingset|slab|node=0|zone=1|lastcpupid=0x1ffff)
kernel: Object 0x00000000885a74b8 @offset=1208 fp=0x00000000885a7c88
kernel: Redzone 00000000885a74b0: bb bb bb bb bb bb bb bb ........
kernel: Object 00000000885a74b8: 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b kkkkkkkkkkkkkkkk
kernel: Object 00000000885a74c8: 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b kkkkkkkkkkkkkkkk
kernel: Object 00000000885a74d8: 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b kkkkkkkkkkkkkkkk
kernel: Object 00000000885a74e8: 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b kkkkkkkkkkkkkkkk
kernel: Object 00000000885a74f8: 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b kkkkkkkkkkkkkkkk
kernel: Object 00000000885a7508: 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 68 4b 6b 6b 6b a5 kkkkkkkkkkhKkkk.
kernel: Redzone 00000000885a7518: bb bb bb bb bb bb bb bb ........
kernel: Padding 00000000885a756c: 5a 5a 5a 5a 5a 5a 5a 5a 5a 5a 5a 5a ZZZZZZZZZZZZ
kernel: CPU: 0 PID: 387 Comm: systemd-udevd Not tainted 6.8.0-HF #2
kernel: Hardware name: IBM 3931 A01 704 (KVM/Linux)
kernel: Call Trace:
kernel: [<00000000ca5ab5b8>] dump_stack_lvl+0x90/0x120
kernel: [<00000000c99d78bc>] check_bytes_and_report+0x114/0x140
kernel: [<00000000c99d53cc>] check_object+0x334/0x3f8
kernel: [<00000000c99d820c>] alloc_debug_processing+0xc4/0x1f8
kernel: [<00000000c99d852e>] get_partial_node.part.0+0x1ee/0x3e0
kernel: [<00000000c99d94ec>] ___slab_alloc+0xaf4/0x13c8
kernel: [<00000000c99d9e38>] __slab_alloc.constprop.0+0x78/0xb8
kernel: [<00000000c99dc8dc>] __kmalloc+0x434/0x590
kernel: [<00000000c9b4c0ce>] ext4_htree_store_dirent+0x4e/0x1c0
kernel: [<00000000c9b908a2>] htree_dirblock_to_tree+0x17a/0x3f0
kernel:
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: qla2xxx: Fix double free of the ha->vp_map pointer
Coverity scan reported potential risk of double free of the pointer
ha->vp_map. ha->vp_map was freed in qla2x00_mem_alloc(), and again freed
in function qla2x00_mem_free(ha).
Assign NULL to vp_map and kfree take care of NULL. |
| In the Linux kernel, the following vulnerability has been resolved:
smb: client: fix potential UAF in cifs_debug_files_proc_show()
Skip sessions that are being teared down (status == SES_EXITING) to
avoid UAF. |
| In the Linux kernel, the following vulnerability has been resolved:
RDMA/mlx5: Fix fortify source warning while accessing Eth segment
------------[ cut here ]------------
memcpy: detected field-spanning write (size 56) of single field "eseg->inline_hdr.start" at /var/lib/dkms/mlnx-ofed-kernel/5.8/build/drivers/infiniband/hw/mlx5/wr.c:131 (size 2)
WARNING: CPU: 0 PID: 293779 at /var/lib/dkms/mlnx-ofed-kernel/5.8/build/drivers/infiniband/hw/mlx5/wr.c:131 mlx5_ib_post_send+0x191b/0x1a60 [mlx5_ib]
Modules linked in: 8021q garp mrp stp llc rdma_ucm(OE) rdma_cm(OE) iw_cm(OE) ib_ipoib(OE) ib_cm(OE) ib_umad(OE) mlx5_ib(OE) ib_uverbs(OE) ib_core(OE) mlx5_core(OE) pci_hyperv_intf mlxdevm(OE) mlx_compat(OE) tls mlxfw(OE) psample nft_fib_inet nft_fib_ipv4 nft_fib_ipv6 nft_fib nft_reject_inet nf_reject_ipv4 nf_reject_ipv6 nft_reject nft_ct nft_chain_nat nf_nat nf_conntrack nf_defrag_ipv6 nf_defrag_ipv4 ip_set nf_tables libcrc32c nfnetlink mst_pciconf(OE) knem(OE) vfio_pci vfio_pci_core vfio_iommu_type1 vfio iommufd irqbypass cuse nfsv3 nfs fscache netfs xfrm_user xfrm_algo ipmi_devintf ipmi_msghandler binfmt_misc crct10dif_pclmul crc32_pclmul polyval_clmulni polyval_generic ghash_clmulni_intel sha512_ssse3 snd_pcsp aesni_intel crypto_simd cryptd snd_pcm snd_timer joydev snd soundcore input_leds serio_raw evbug nfsd auth_rpcgss nfs_acl lockd grace sch_fq_codel sunrpc drm efi_pstore ip_tables x_tables autofs4 psmouse virtio_net net_failover failover floppy
[last unloaded: mlx_compat(OE)]
CPU: 0 PID: 293779 Comm: ssh Tainted: G OE 6.2.0-32-generic #32~22.04.1-Ubuntu
Hardware name: Red Hat KVM, BIOS 0.5.1 01/01/2011
RIP: 0010:mlx5_ib_post_send+0x191b/0x1a60 [mlx5_ib]
Code: 0c 01 00 a8 01 75 25 48 8b 75 a0 b9 02 00 00 00 48 c7 c2 10 5b fd c0 48 c7 c7 80 5b fd c0 c6 05 57 0c 03 00 01 e8 95 4d 93 da <0f> 0b 44 8b 4d b0 4c 8b 45 c8 48 8b 4d c0 e9 49 fb ff ff 41 0f b7
RSP: 0018:ffffb5b48478b570 EFLAGS: 00010046
RAX: 0000000000000000 RBX: 0000000000000001 RCX: 0000000000000000
RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000000000000000
RBP: ffffb5b48478b628 R08: 0000000000000000 R09: 0000000000000000
R10: 0000000000000000 R11: 0000000000000000 R12: ffffb5b48478b5e8
R13: ffff963a3c609b5e R14: ffff9639c3fbd800 R15: ffffb5b480475a80
FS: 00007fc03b444c80(0000) GS:ffff963a3dc00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000556f46bdf000 CR3: 0000000006ac6003 CR4: 00000000003706f0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
<TASK>
? show_regs+0x72/0x90
? mlx5_ib_post_send+0x191b/0x1a60 [mlx5_ib]
? __warn+0x8d/0x160
? mlx5_ib_post_send+0x191b/0x1a60 [mlx5_ib]
? report_bug+0x1bb/0x1d0
? handle_bug+0x46/0x90
? exc_invalid_op+0x19/0x80
? asm_exc_invalid_op+0x1b/0x20
? mlx5_ib_post_send+0x191b/0x1a60 [mlx5_ib]
mlx5_ib_post_send_nodrain+0xb/0x20 [mlx5_ib]
ipoib_send+0x2ec/0x770 [ib_ipoib]
ipoib_start_xmit+0x5a0/0x770 [ib_ipoib]
dev_hard_start_xmit+0x8e/0x1e0
? validate_xmit_skb_list+0x4d/0x80
sch_direct_xmit+0x116/0x3a0
__dev_xmit_skb+0x1fd/0x580
__dev_queue_xmit+0x284/0x6b0
? _raw_spin_unlock_irq+0xe/0x50
? __flush_work.isra.0+0x20d/0x370
? push_pseudo_header+0x17/0x40 [ib_ipoib]
neigh_connected_output+0xcd/0x110
ip_finish_output2+0x179/0x480
? __smp_call_single_queue+0x61/0xa0
__ip_finish_output+0xc3/0x190
ip_finish_output+0x2e/0xf0
ip_output+0x78/0x110
? __pfx_ip_finish_output+0x10/0x10
ip_local_out+0x64/0x70
__ip_queue_xmit+0x18a/0x460
ip_queue_xmit+0x15/0x30
__tcp_transmit_skb+0x914/0x9c0
tcp_write_xmit+0x334/0x8d0
tcp_push_one+0x3c/0x60
tcp_sendmsg_locked+0x2e1/0xac0
tcp_sendmsg+0x2d/0x50
inet_sendmsg+0x43/0x90
sock_sendmsg+0x68/0x80
sock_write_iter+0x93/0x100
vfs_write+0x326/0x3c0
ksys_write+0xbd/0xf0
? do_syscall_64+0x69/0x90
__x64_sys_write+0x19/0x30
do_syscall_
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
btrfs: dev-replace: properly validate device names
There's a syzbot report that device name buffers passed to device
replace are not properly checked for string termination which could lead
to a read out of bounds in getname_kernel().
Add a helper that validates both source and target device name buffers.
For devid as the source initialize the buffer to empty string in case
something tries to read it later.
This was originally analyzed and fixed in a different way by Edward Adam
Davis (see links). |
| In the Linux kernel, the following vulnerability has been resolved:
dm-crypt: don't modify the data when using authenticated encryption
It was said that authenticated encryption could produce invalid tag when
the data that is being encrypted is modified [1]. So, fix this problem by
copying the data into the clone bio first and then encrypt them inside the
clone bio.
This may reduce performance, but it is needed to prevent the user from
corrupting the device by writing data with O_DIRECT and modifying them at
the same time.
[1] https://lore.kernel.org/all/20240207004723.GA35324@sol.localdomain/T/ |
| In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: Fix race condition in hidp_session_thread
There is a potential race condition in hidp_session_thread that may
lead to use-after-free. For instance, the timer is active while
hidp_del_timer is called in hidp_session_thread(). After hidp_session_put,
then 'session' will be freed, causing kernel panic when hidp_idle_timeout
is running.
The solution is to use del_timer_sync instead of del_timer.
Here is the call trace:
? hidp_session_probe+0x780/0x780
call_timer_fn+0x2d/0x1e0
__run_timers.part.0+0x569/0x940
hidp_session_probe+0x780/0x780
call_timer_fn+0x1e0/0x1e0
ktime_get+0x5c/0xf0
lapic_next_deadline+0x2c/0x40
clockevents_program_event+0x205/0x320
run_timer_softirq+0xa9/0x1b0
__do_softirq+0x1b9/0x641
__irq_exit_rcu+0xdc/0x190
irq_exit_rcu+0xe/0x20
sysvec_apic_timer_interrupt+0xa1/0xc0 |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: lpfc: Prevent lpfc_debugfs_lockstat_write() buffer overflow
A static code analysis tool flagged the possibility of buffer overflow when
using copy_from_user() for a debugfs entry.
Currently, it is possible that copy_from_user() copies more bytes than what
would fit in the mybuf char array. Add a min() restriction check between
sizeof(mybuf) - 1 and nbytes passed from the userspace buffer to protect
against buffer overflow. |
| In the Linux kernel, the following vulnerability has been resolved:
ALSA: pcm: Fix potential data race at PCM memory allocation helpers
The PCM memory allocation helpers have a sanity check against too many
buffer allocations. However, the check is performed without a proper
lock and the allocation isn't serialized; this allows user to allocate
more memories than predefined max size.
Practically seen, this isn't really a big problem, as it's more or
less some "soft limit" as a sanity check, and it's not possible to
allocate unlimitedly. But it's still better to address this for more
consistent behavior.
The patch covers the size check in do_alloc_pages() with the
card->memory_mutex, and increases the allocated size there for
preventing the further overflow. When the actual allocation fails,
the size is decreased accordingly. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: iwlwifi: pcie: fix possible NULL pointer dereference
It is possible that iwl_pci_probe() will fail and free the trans,
then afterwards iwl_pci_remove() will be called and crash by trying
to access trans which is already freed, fix it.
iwlwifi 0000:01:00.0: Detected crf-id 0xa5a5a5a2, cnv-id 0xa5a5a5a2
wfpm id 0xa5a5a5a2
iwlwifi 0000:01:00.0: Can't find a correct rfid for crf id 0x5a2
...
BUG: kernel NULL pointer dereference, address: 0000000000000028
...
RIP: 0010:iwl_pci_remove+0x12/0x30 [iwlwifi]
pci_device_remove+0x3e/0xb0
device_release_driver_internal+0x103/0x1f0
driver_detach+0x4c/0x90
bus_remove_driver+0x5c/0xd0
driver_unregister+0x31/0x50
pci_unregister_driver+0x40/0x90
iwl_pci_unregister_driver+0x15/0x20 [iwlwifi]
__exit_compat+0x9/0x98 [iwlwifi]
__x64_sys_delete_module+0x147/0x260 |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: ath12k: Fix memory leak in rx_desc and tx_desc
Currently when ath12k_dp_cc_desc_init() is called we allocate
memory to rx_descs and tx_descs. In ath12k_dp_cc_cleanup(), during
descriptor cleanup rx_descs and tx_descs memory is not freed.
This is cause of memory leak. These allocated memory should be
freed in ath12k_dp_cc_cleanup.
In ath12k_dp_cc_desc_init(), we can save base address of rx_descs
and tx_descs. In ath12k_dp_cc_cleanup(), we can free rx_descs and
tx_descs memory using their base address.
Tested-on: QCN9274 hw2.0 PCI WLAN.WBE.1.0.1-00029-QCAHKSWPL_SILICONZ-1 |
| In the Linux kernel, the following vulnerability has been resolved:
interconnect: Fix locking for runpm vs reclaim
For cases where icc_bw_set() can be called in callbaths that could
deadlock against shrinker/reclaim, such as runpm resume, we need to
decouple the icc locking. Introduce a new icc_bw_lock for cases where
we need to serialize bw aggregation and update to decouple that from
paths that require memory allocation such as node/link creation/
destruction.
Fixes this lockdep splat:
======================================================
WARNING: possible circular locking dependency detected
6.2.0-rc8-debug+ #554 Not tainted
------------------------------------------------------
ring0/132 is trying to acquire lock:
ffffff80871916d0 (&gmu->lock){+.+.}-{3:3}, at: a6xx_pm_resume+0xf0/0x234
but task is already holding lock:
ffffffdb5aee57e8 (dma_fence_map){++++}-{0:0}, at: msm_job_run+0x68/0x150
which lock already depends on the new lock.
the existing dependency chain (in reverse order) is:
-> #4 (dma_fence_map){++++}-{0:0}:
__dma_fence_might_wait+0x74/0xc0
dma_resv_lockdep+0x1f4/0x2f4
do_one_initcall+0x104/0x2bc
kernel_init_freeable+0x344/0x34c
kernel_init+0x30/0x134
ret_from_fork+0x10/0x20
-> #3 (mmu_notifier_invalidate_range_start){+.+.}-{0:0}:
fs_reclaim_acquire+0x80/0xa8
slab_pre_alloc_hook.constprop.0+0x40/0x25c
__kmem_cache_alloc_node+0x60/0x1cc
__kmalloc+0xd8/0x100
topology_parse_cpu_capacity+0x8c/0x178
get_cpu_for_node+0x88/0xc4
parse_cluster+0x1b0/0x28c
parse_cluster+0x8c/0x28c
init_cpu_topology+0x168/0x188
smp_prepare_cpus+0x24/0xf8
kernel_init_freeable+0x18c/0x34c
kernel_init+0x30/0x134
ret_from_fork+0x10/0x20
-> #2 (fs_reclaim){+.+.}-{0:0}:
__fs_reclaim_acquire+0x3c/0x48
fs_reclaim_acquire+0x54/0xa8
slab_pre_alloc_hook.constprop.0+0x40/0x25c
__kmem_cache_alloc_node+0x60/0x1cc
__kmalloc+0xd8/0x100
kzalloc.constprop.0+0x14/0x20
icc_node_create_nolock+0x4c/0xc4
icc_node_create+0x38/0x58
qcom_icc_rpmh_probe+0x1b8/0x248
platform_probe+0x70/0xc4
really_probe+0x158/0x290
__driver_probe_device+0xc8/0xe0
driver_probe_device+0x44/0x100
__driver_attach+0xf8/0x108
bus_for_each_dev+0x78/0xc4
driver_attach+0x2c/0x38
bus_add_driver+0xd0/0x1d8
driver_register+0xbc/0xf8
__platform_driver_register+0x30/0x3c
qnoc_driver_init+0x24/0x30
do_one_initcall+0x104/0x2bc
kernel_init_freeable+0x344/0x34c
kernel_init+0x30/0x134
ret_from_fork+0x10/0x20
-> #1 (icc_lock){+.+.}-{3:3}:
__mutex_lock+0xcc/0x3c8
mutex_lock_nested+0x30/0x44
icc_set_bw+0x88/0x2b4
_set_opp_bw+0x8c/0xd8
_set_opp+0x19c/0x300
dev_pm_opp_set_opp+0x84/0x94
a6xx_gmu_resume+0x18c/0x804
a6xx_pm_resume+0xf8/0x234
adreno_runtime_resume+0x2c/0x38
pm_generic_runtime_resume+0x30/0x44
__rpm_callback+0x15c/0x174
rpm_callback+0x78/0x7c
rpm_resume+0x318/0x524
__pm_runtime_resume+0x78/0xbc
adreno_load_gpu+0xc4/0x17c
msm_open+0x50/0x120
drm_file_alloc+0x17c/0x228
drm_open_helper+0x74/0x118
drm_open+0xa0/0x144
drm_stub_open+0xd4/0xe4
chrdev_open+0x1b8/0x1e4
do_dentry_open+0x2f8/0x38c
vfs_open+0x34/0x40
path_openat+0x64c/0x7b4
do_filp_open+0x54/0xc4
do_sys_openat2+0x9c/0x100
do_sys_open+0x50/0x7c
__arm64_sys_openat+0x28/0x34
invoke_syscall+0x8c/0x128
el0_svc_common.constprop.0+0xa0/0x11c
do_el0_
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
arm64: mm: fix VA-range sanity check
Both create_mapping_noalloc() and update_mapping_prot() sanity-check
their 'virt' parameter, but the check itself doesn't make much sense.
The condition used today appears to be a historical accident.
The sanity-check condition:
if ((virt >= PAGE_END) && (virt < VMALLOC_START)) {
[ ... warning here ... ]
return;
}
... can only be true for the KASAN shadow region or the module region,
and there's no reason to exclude these specifically for creating and
updateing mappings.
When arm64 support was first upstreamed in commit:
c1cc1552616d0f35 ("arm64: MMU initialisation")
... the condition was:
if (virt < VMALLOC_START) {
[ ... warning here ... ]
return;
}
At the time, VMALLOC_START was the lowest kernel address, and this was
checking whether 'virt' would be translated via TTBR1.
Subsequently in commit:
14c127c957c1c607 ("arm64: mm: Flip kernel VA space")
... the condition was changed to:
if ((virt >= VA_START) && (virt < VMALLOC_START)) {
[ ... warning here ... ]
return;
}
This appear to have been a thinko. The commit moved the linear map to
the bottom of the kernel address space, with VMALLOC_START being at the
halfway point. The old condition would warn for changes to the linear
map below this, and at the time VA_START was the end of the linear map.
Subsequently we cleaned up the naming of VA_START in commit:
77ad4ce69321abbe ("arm64: memory: rename VA_START to PAGE_END")
... keeping the erroneous condition as:
if ((virt >= PAGE_END) && (virt < VMALLOC_START)) {
[ ... warning here ... ]
return;
}
Correct the condition to check against the start of the TTBR1 address
space, which is currently PAGE_OFFSET. This simplifies the logic, and
more clearly matches the "outside kernel range" message in the warning. |
| In the Linux kernel, the following vulnerability has been resolved:
devlink: report devlink_port_type_warn source device
devlink_port_type_warn is scheduled for port devlink and warning
when the port type is not set. But from this warning it is not easy
found out which device (driver) has no devlink port set.
[ 3709.975552] Type was not set for devlink port.
[ 3709.975579] WARNING: CPU: 1 PID: 13092 at net/devlink/leftover.c:6775 devlink_port_type_warn+0x11/0x20
[ 3709.993967] Modules linked in: openvswitch nf_conncount nf_nat nf_conntrack nf_defrag_ipv6 nf_defrag_ipv4 nfnetlink bluetooth rpcsec_gss_krb5 auth_rpcgss nfsv4 dns_resolver nfs lockd grace fscache netfs vhost_net vhost vhost_iotlb tap tun bridge stp llc qrtr intel_rapl_msr intel_rapl_common i10nm_edac nfit libnvdimm x86_pkg_temp_thermal mlx5_ib intel_powerclamp coretemp dell_wmi ledtrig_audio sparse_keymap ipmi_ssif kvm_intel ib_uverbs rfkill ib_core video kvm iTCO_wdt acpi_ipmi intel_vsec irqbypass ipmi_si iTCO_vendor_support dcdbas ipmi_devintf mei_me ipmi_msghandler rapl mei intel_cstate isst_if_mmio isst_if_mbox_pci dell_smbios intel_uncore isst_if_common i2c_i801 dell_wmi_descriptor wmi_bmof i2c_smbus intel_pch_thermal pcspkr acpi_power_meter xfs libcrc32c sd_mod sg nvme_tcp mgag200 i2c_algo_bit nvme_fabrics drm_shmem_helper drm_kms_helper nvme syscopyarea ahci sysfillrect sysimgblt nvme_core fb_sys_fops crct10dif_pclmul libahci mlx5_core sfc crc32_pclmul nvme_common drm
[ 3709.994030] crc32c_intel mtd t10_pi mlxfw libata tg3 mdio megaraid_sas psample ghash_clmulni_intel pci_hyperv_intf wmi dm_multipath sunrpc dm_mirror dm_region_hash dm_log dm_mod be2iscsi bnx2i cnic uio cxgb4i cxgb4 tls libcxgbi libcxgb qla4xxx iscsi_boot_sysfs iscsi_tcp libiscsi_tcp libiscsi scsi_transport_iscsi fuse
[ 3710.108431] CPU: 1 PID: 13092 Comm: kworker/1:1 Kdump: loaded Not tainted 5.14.0-319.el9.x86_64 #1
[ 3710.108435] Hardware name: Dell Inc. PowerEdge R750/0PJ80M, BIOS 1.8.2 09/14/2022
[ 3710.108437] Workqueue: events devlink_port_type_warn
[ 3710.108440] RIP: 0010:devlink_port_type_warn+0x11/0x20
[ 3710.108443] Code: 84 76 fe ff ff 48 c7 03 20 0e 1a ad 31 c0 e9 96 fd ff ff 66 0f 1f 44 00 00 0f 1f 44 00 00 48 c7 c7 18 24 4e ad e8 ef 71 62 ff <0f> 0b c3 cc cc cc cc 0f 1f 84 00 00 00 00 00 0f 1f 44 00 00 f6 87
[ 3710.108445] RSP: 0018:ff3b6d2e8b3c7e90 EFLAGS: 00010282
[ 3710.108447] RAX: 0000000000000000 RBX: ff366d6580127080 RCX: 0000000000000027
[ 3710.108448] RDX: 0000000000000027 RSI: 00000000ffff86de RDI: ff366d753f41f8c8
[ 3710.108449] RBP: ff366d658ff5a0c0 R08: ff366d753f41f8c0 R09: ff3b6d2e8b3c7e18
[ 3710.108450] R10: 0000000000000001 R11: 0000000000000023 R12: ff366d753f430600
[ 3710.108451] R13: ff366d753f436900 R14: 0000000000000000 R15: ff366d753f436905
[ 3710.108452] FS: 0000000000000000(0000) GS:ff366d753f400000(0000) knlGS:0000000000000000
[ 3710.108453] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 3710.108454] CR2: 00007f1c57bc74e0 CR3: 000000111d26a001 CR4: 0000000000773ee0
[ 3710.108456] PKRU: 55555554
[ 3710.108457] Call Trace:
[ 3710.108458] <TASK>
[ 3710.108459] process_one_work+0x1e2/0x3b0
[ 3710.108466] ? rescuer_thread+0x390/0x390
[ 3710.108468] worker_thread+0x50/0x3a0
[ 3710.108471] ? rescuer_thread+0x390/0x390
[ 3710.108473] kthread+0xdd/0x100
[ 3710.108477] ? kthread_complete_and_exit+0x20/0x20
[ 3710.108479] ret_from_fork+0x1f/0x30
[ 3710.108485] </TASK>
[ 3710.108486] ---[ end trace 1b4b23cd0c65d6a0 ]---
After patch:
[ 402.473064] ice 0000:41:00.0: Type was not set for devlink port.
[ 402.473064] ice 0000:41:00.1: Type was not set for devlink port. |