| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: snic: Fix possible UAF in snic_tgt_create()
Smatch reports a warning as follows:
drivers/scsi/snic/snic_disc.c:307 snic_tgt_create() warn:
'&tgt->list' not removed from list
If device_add() fails in snic_tgt_create(), tgt will be freed, but
tgt->list will not be removed from snic->disc.tgt_list, then list traversal
may cause UAF.
Remove from snic->disc.tgt_list before free(). |
| In the Linux kernel, the following vulnerability has been resolved:
vdpa/vp_vdpa: fix kfree a wrong pointer in vp_vdpa_remove
In vp_vdpa_remove(), the code kfree(&vp_vdpa_mgtdev->mgtdev.id_table) uses
a reference of pointer as the argument of kfree, which is the wrong pointer
and then may hit crash like this:
Unable to handle kernel paging request at virtual address 00ffff003363e30c
Internal error: Oops: 96000004 [#1] SMP
Call trace:
rb_next+0x20/0x5c
ext4_readdir+0x494/0x5c4 [ext4]
iterate_dir+0x168/0x1b4
__se_sys_getdents64+0x68/0x170
__arm64_sys_getdents64+0x24/0x30
el0_svc_common.constprop.0+0x7c/0x1bc
do_el0_svc+0x2c/0x94
el0_svc+0x20/0x30
el0_sync_handler+0xb0/0xb4
el0_sync+0x160/0x180
Code: 54000220 f9400441 b4000161 aa0103e0 (f9400821)
SMP: stopping secondary CPUs
Starting crashdump kernel... |
| In the Linux kernel, the following vulnerability has been resolved:
mmc: via-sdmmc: fix return value check of mmc_add_host()
mmc_add_host() may return error, if we ignore its return value,
it will lead two issues:
1. The memory that allocated in mmc_alloc_host() is leaked.
2. In the remove() path, mmc_remove_host() will be called to
delete device, but it's not added yet, it will lead a kernel
crash because of null-ptr-deref in device_del().
Fix this by checking the return value and goto error path which
will call mmc_free_host(). |
| In the Linux kernel, the following vulnerability has been resolved:
i2c: xiic: xiic_xfer(): Fix runtime PM leak on error path
The xiic_xfer() function gets a runtime PM reference when the function is
entered. This reference is released when the function is exited. There is
currently one error path where the function exits directly, which leads to
a leak of the runtime PM reference.
Make sure that this error path also releases the runtime PM reference. |
| In the Linux kernel, the following vulnerability has been resolved:
drivers: mcb: fix resource leak in mcb_probe()
When probe hook function failed in mcb_probe(), it doesn't put the device.
Compiled test only. |
| In the Linux kernel, the following vulnerability has been resolved:
tpm: tpm_tis: Add the missed acpi_put_table() to fix memory leak
In check_acpi_tpm2(), we get the TPM2 table just to make
sure the table is there, not used after the init, so the
acpi_put_table() should be added to release the ACPI memory. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: mt76: mt7921: fix use after free in mt7921_acpi_read()
Don't dereference "sar_root" after it has been freed. |
| In the Linux kernel, the following vulnerability has been resolved:
SUNRPC: Don't leak netobj memory when gss_read_proxy_verf() fails |
| In the Linux kernel, the following vulnerability has been resolved:
ipv6: ensure sane device mtu in tunnels
Another syzbot report [1] with no reproducer hints
at a bug in ip6_gre tunnel (dev:ip6gretap0)
Since ipv6 mcast code makes sure to read dev->mtu once
and applies a sanity check on it (see commit b9b312a7a451
"ipv6: mcast: better catch silly mtu values"), a remaining
possibility is that a layer is able to set dev->mtu to
an underflowed value (high order bit set).
This could happen indeed in ip6gre_tnl_link_config_route(),
ip6_tnl_link_config() and ipip6_tunnel_bind_dev()
Make sure to sanitize mtu value in a local variable before
it is written once on dev->mtu, as lockless readers could
catch wrong temporary value.
[1]
skbuff: skb_over_panic: text:ffff80000b7a2f38 len:40 put:40 head:ffff000149dcf200 data:ffff000149dcf2b0 tail:0xd8 end:0xc0 dev:ip6gretap0
------------[ cut here ]------------
kernel BUG at net/core/skbuff.c:120
Internal error: Oops - BUG: 00000000f2000800 [#1] PREEMPT SMP
Modules linked in:
CPU: 1 PID: 10241 Comm: kworker/1:1 Not tainted 6.0.0-rc7-syzkaller-18095-gbbed346d5a96 #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 09/30/2022
Workqueue: mld mld_ifc_work
pstate: 60400005 (nZCv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--)
pc : skb_panic+0x4c/0x50 net/core/skbuff.c:116
lr : skb_panic+0x4c/0x50 net/core/skbuff.c:116
sp : ffff800020dd3b60
x29: ffff800020dd3b70 x28: 0000000000000000 x27: ffff00010df2a800
x26: 00000000000000c0 x25: 00000000000000b0 x24: ffff000149dcf200
x23: 00000000000000c0 x22: 00000000000000d8 x21: ffff80000b7a2f38
x20: ffff00014c2f7800 x19: 0000000000000028 x18: 00000000000001a9
x17: 0000000000000000 x16: ffff80000db49158 x15: ffff000113bf1a80
x14: 0000000000000000 x13: 00000000ffffffff x12: ffff000113bf1a80
x11: ff808000081c0d5c x10: 0000000000000000 x9 : 73f125dc5c63ba00
x8 : 73f125dc5c63ba00 x7 : ffff800008161d1c x6 : 0000000000000000
x5 : 0000000000000080 x4 : 0000000000000001 x3 : 0000000000000000
x2 : ffff0001fefddcd0 x1 : 0000000100000000 x0 : 0000000000000089
Call trace:
skb_panic+0x4c/0x50 net/core/skbuff.c:116
skb_over_panic net/core/skbuff.c:125 [inline]
skb_put+0xd4/0xdc net/core/skbuff.c:2049
ip6_mc_hdr net/ipv6/mcast.c:1714 [inline]
mld_newpack+0x14c/0x270 net/ipv6/mcast.c:1765
add_grhead net/ipv6/mcast.c:1851 [inline]
add_grec+0xa20/0xae0 net/ipv6/mcast.c:1989
mld_send_cr+0x438/0x5a8 net/ipv6/mcast.c:2115
mld_ifc_work+0x38/0x290 net/ipv6/mcast.c:2653
process_one_work+0x2d8/0x504 kernel/workqueue.c:2289
worker_thread+0x340/0x610 kernel/workqueue.c:2436
kthread+0x12c/0x158 kernel/kthread.c:376
ret_from_fork+0x10/0x20 arch/arm64/kernel/entry.S:860
Code: 91011400 aa0803e1 a90027ea 94373093 (d4210000) |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: pm8001: Fix running_req for internal abort commands
Disabling the remote phy for a SATA disk causes a hang:
root@(none)$ more /sys/class/sas_phy/phy-0:0:8/target_port_protocols
sata
root@(none)$ echo 0 > sys/class/sas_phy/phy-0:0:8/enable
root@(none)$ [ 67.855950] sas: ex 500e004aaaaaaa1f phy08 change count has changed
[ 67.920585] sd 0:0:2:0: [sdc] Synchronizing SCSI cache
[ 67.925780] sd 0:0:2:0: [sdc] Synchronize Cache(10) failed: Result: hostbyte=0x04 driverbyte=DRIVER_OK
[ 67.935094] sd 0:0:2:0: [sdc] Stopping disk
[ 67.939305] sd 0:0:2:0: [sdc] Start/Stop Unit failed: Result: hostbyte=0x04 driverbyte=DRIVER_OK
...
[ 123.998998] INFO: task kworker/u192:1:642 blocked for more than 30 seconds.
[ 124.005960] Not tainted 6.0.0-rc1-205202-gf26f8f761e83 #218
[ 124.012049] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
[ 124.019872] task:kworker/u192:1 state:D stack:0 pid: 642 ppid: 2 flags:0x00000008
[ 124.028223] Workqueue: 0000:04:00.0_event_q sas_port_event_worker
[ 124.034319] Call trace:
[ 124.036758] __switch_to+0x128/0x278
[ 124.040333] __schedule+0x434/0xa58
[ 124.043820] schedule+0x94/0x138
[ 124.047045] schedule_timeout+0x2fc/0x368
[ 124.051052] wait_for_completion+0xdc/0x200
[ 124.055234] __flush_workqueue+0x1a8/0x708
[ 124.059328] sas_porte_broadcast_rcvd+0xa8/0xc0
[ 124.063858] sas_port_event_worker+0x60/0x98
[ 124.068126] process_one_work+0x3f8/0x660
[ 124.072134] worker_thread+0x70/0x700
[ 124.075793] kthread+0x1a4/0x1b8
[ 124.079014] ret_from_fork+0x10/0x20
The issue is that the per-device running_req read in
pm8001_dev_gone_notify() never goes to zero and we never make progress.
This is caused by missing accounting for running_req for when an internal
abort command completes.
In commit 2cbbf489778e ("scsi: pm8001: Use libsas internal abort support")
we started to send internal abort commands as a proper sas_task. In this
when we deliver a sas_task to HW the per-device running_req is incremented
in pm8001_queue_command(). However it is never decremented for internal
abort commnds, so decrement in pm8001_mpi_task_abort_resp(). |
| In the Linux kernel, the following vulnerability has been resolved:
cifs: Fix the error length of VALIDATE_NEGOTIATE_INFO message
Commit d5c7076b772a ("smb3: add smb3.1.1 to default dialect list")
extend the dialects from 3 to 4, but forget to decrease the extended
length when specific the dialect, then the message length is larger
than expected.
This maybe leak some info through network because not initialize the
message body.
After apply this patch, the VALIDATE_NEGOTIATE_INFO message length is
reduced from 28 bytes to 26 bytes. |
| In the Linux kernel, the following vulnerability has been resolved:
keys: Fix linking a duplicate key to a keyring's assoc_array
When making a DNS query inside the kernel using dns_query(), the request
code can in rare cases end up creating a duplicate index key in the
assoc_array of the destination keyring. It is eventually found by
a BUG_ON() check in the assoc_array implementation and results in
a crash.
Example report:
[2158499.700025] kernel BUG at ../lib/assoc_array.c:652!
[2158499.700039] invalid opcode: 0000 [#1] SMP PTI
[2158499.700065] CPU: 3 PID: 31985 Comm: kworker/3:1 Kdump: loaded Not tainted 5.3.18-150300.59.90-default #1 SLE15-SP3
[2158499.700096] Hardware name: VMware, Inc. VMware Virtual Platform/440BX Desktop Reference Platform, BIOS 6.00 11/12/2020
[2158499.700351] Workqueue: cifsiod cifs_resolve_server [cifs]
[2158499.700380] RIP: 0010:assoc_array_insert+0x85f/0xa40
[2158499.700401] Code: ff 74 2b 48 8b 3b 49 8b 45 18 4c 89 e6 48 83 e7 fe e8 95 ec 74 00 3b 45 88 7d db 85 c0 79 d4 0f 0b 0f 0b 0f 0b e8 41 f2 be ff <0f> 0b 0f 0b 81 7d 88 ff ff ff 7f 4c 89 eb 4c 8b ad 58 ff ff ff 0f
[2158499.700448] RSP: 0018:ffffc0bd6187faf0 EFLAGS: 00010282
[2158499.700470] RAX: ffff9f1ea7da2fe8 RBX: ffff9f1ea7da2fc1 RCX: 0000000000000005
[2158499.700492] RDX: 0000000000000000 RSI: 0000000000000005 RDI: 0000000000000000
[2158499.700515] RBP: ffffc0bd6187fbb0 R08: ffff9f185faf1100 R09: 0000000000000000
[2158499.700538] R10: ffff9f1ea7da2cc0 R11: 000000005ed8cec8 R12: ffffc0bd6187fc28
[2158499.700561] R13: ffff9f15feb8d000 R14: ffff9f1ea7da2fc0 R15: ffff9f168dc0d740
[2158499.700585] FS: 0000000000000000(0000) GS:ffff9f185fac0000(0000) knlGS:0000000000000000
[2158499.700610] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[2158499.700630] CR2: 00007fdd94fca238 CR3: 0000000809d8c006 CR4: 00000000003706e0
[2158499.700702] Call Trace:
[2158499.700741] ? key_alloc+0x447/0x4b0
[2158499.700768] ? __key_link_begin+0x43/0xa0
[2158499.700790] __key_link_begin+0x43/0xa0
[2158499.700814] request_key_and_link+0x2c7/0x730
[2158499.700847] ? dns_resolver_read+0x20/0x20 [dns_resolver]
[2158499.700873] ? key_default_cmp+0x20/0x20
[2158499.700898] request_key_tag+0x43/0xa0
[2158499.700926] dns_query+0x114/0x2ca [dns_resolver]
[2158499.701127] dns_resolve_server_name_to_ip+0x194/0x310 [cifs]
[2158499.701164] ? scnprintf+0x49/0x90
[2158499.701190] ? __switch_to_asm+0x40/0x70
[2158499.701211] ? __switch_to_asm+0x34/0x70
[2158499.701405] reconn_set_ipaddr_from_hostname+0x81/0x2a0 [cifs]
[2158499.701603] cifs_resolve_server+0x4b/0xd0 [cifs]
[2158499.701632] process_one_work+0x1f8/0x3e0
[2158499.701658] worker_thread+0x2d/0x3f0
[2158499.701682] ? process_one_work+0x3e0/0x3e0
[2158499.701703] kthread+0x10d/0x130
[2158499.701723] ? kthread_park+0xb0/0xb0
[2158499.701746] ret_from_fork+0x1f/0x40
The situation occurs as follows:
* Some kernel facility invokes dns_query() to resolve a hostname, for
example, "abcdef". The function registers its global DNS resolver
cache as current->cred.thread_keyring and passes the query to
request_key_net() -> request_key_tag() -> request_key_and_link().
* Function request_key_and_link() creates a keyring_search_context
object. Its match_data.cmp method gets set via a call to
type->match_preparse() (resolves to dns_resolver_match_preparse()) to
dns_resolver_cmp().
* Function request_key_and_link() continues and invokes
search_process_keyrings_rcu() which returns that a given key was not
found. The control is then passed to request_key_and_link() ->
construct_alloc_key().
* Concurrently to that, a second task similarly makes a DNS query for
"abcdef." and its result gets inserted into the DNS resolver cache.
* Back on the first task, function construct_alloc_key() first runs
__key_link_begin() to determine an assoc_array_edit operation to
insert a new key. Index keys in the array are compared exactly as-is,
using keyring_compare_object(). The operation
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
ksmbd: fix possible memory leak in smb2_lock()
argv needs to be free when setup_async_work fails or when the current
process is woken up. |
| In the Linux kernel, the following vulnerability has been resolved:
net/mlx5e: fix memory leak in mlx5e_ptp_open
When kvzalloc_node or kvzalloc failed in mlx5e_ptp_open, the memory
pointed by "c" or "cparams" is not freed, which can lead to a memory
leak. Fix by freeing the array in the error path. |
| In the Linux kernel, the following vulnerability has been resolved:
of: unittest: fix null pointer dereferencing in of_unittest_find_node_by_name()
when kmalloc() fail to allocate memory in kasprintf(), name
or full_name will be NULL, strcmp() will cause
null pointer dereference. |
| In the Linux kernel, the following vulnerability has been resolved:
net: stream: purge sk_error_queue in sk_stream_kill_queues()
Changheon Lee reported TCP socket leaks, with a nice repro.
It seems we leak TCP sockets with the following sequence:
1) SOF_TIMESTAMPING_TX_ACK is enabled on the socket.
Each ACK will cook an skb put in error queue, from __skb_tstamp_tx().
__skb_tstamp_tx() is using skb_clone(), unless
SOF_TIMESTAMPING_OPT_TSONLY was also requested.
2) If the application is also using MSG_ZEROCOPY, then we put in the
error queue cloned skbs that had a struct ubuf_info attached to them.
Whenever an struct ubuf_info is allocated, sock_zerocopy_alloc()
does a sock_hold().
As long as the cloned skbs are still in sk_error_queue,
socket refcount is kept elevated.
3) Application closes the socket, while error queue is not empty.
Since tcp_close() no longer purges the socket error queue,
we might end up with a TCP socket with at least one skb in
error queue keeping the socket alive forever.
This bug can be (ab)used to consume all kernel memory
and freeze the host.
We need to purge the error queue, with proper synchronization
against concurrent writers. |
| In the Linux kernel, the following vulnerability has been resolved:
erofs: fix missing unmap if z_erofs_get_extent_compressedlen() fails
Otherwise, meta buffers could be leaked. |
| In the Linux kernel, the following vulnerability has been resolved:
hwrng: amd - Fix PCI device refcount leak
for_each_pci_dev() is implemented by pci_get_device(). The comment of
pci_get_device() says that it will increase the reference count for the
returned pci_dev and also decrease the reference count for the input
pci_dev @from if it is not NULL.
If we break for_each_pci_dev() loop with pdev not NULL, we need to call
pci_dev_put() to decrease the reference count. Add the missing
pci_dev_put() for the normal and error path. |
| In the Linux kernel, the following vulnerability has been resolved:
bpf: prevent leak of lsm program after failed attach
In [0], we added the ability to bpf_prog_attach LSM programs to cgroups,
but in our validation to make sure the prog is meant to be attached to
BPF_LSM_CGROUP, we return too early if the check fails. This results in
lack of decrementing prog's refcnt (through bpf_prog_put)
leaving the LSM program alive past the point of the expected lifecycle.
This fix allows for the decrement to take place.
[0] https://lore.kernel.org/all/20220628174314.1216643-4-sdf@google.com/ |
| In the Linux kernel, the following vulnerability has been resolved:
bpf: Disable preemption in bpf_event_output
We received report [1] of kernel crash, which is caused by
using nesting protection without disabled preemption.
The bpf_event_output can be called by programs executed by
bpf_prog_run_array_cg function that disabled migration but
keeps preemption enabled.
This can cause task to be preempted by another one inside the
nesting protection and lead eventually to two tasks using same
perf_sample_data buffer and cause crashes like:
BUG: kernel NULL pointer dereference, address: 0000000000000001
#PF: supervisor instruction fetch in kernel mode
#PF: error_code(0x0010) - not-present page
...
? perf_output_sample+0x12a/0x9a0
? finish_task_switch.isra.0+0x81/0x280
? perf_event_output+0x66/0xa0
? bpf_event_output+0x13a/0x190
? bpf_event_output_data+0x22/0x40
? bpf_prog_dfc84bbde731b257_cil_sock4_connect+0x40a/0xacb
? xa_load+0x87/0xe0
? __cgroup_bpf_run_filter_sock_addr+0xc1/0x1a0
? release_sock+0x3e/0x90
? sk_setsockopt+0x1a1/0x12f0
? udp_pre_connect+0x36/0x50
? inet_dgram_connect+0x93/0xa0
? __sys_connect+0xb4/0xe0
? udp_setsockopt+0x27/0x40
? __pfx_udp_push_pending_frames+0x10/0x10
? __sys_setsockopt+0xdf/0x1a0
? __x64_sys_connect+0xf/0x20
? do_syscall_64+0x3a/0x90
? entry_SYSCALL_64_after_hwframe+0x72/0xdc
Fixing this by disabling preemption in bpf_event_output.
[1] https://github.com/cilium/cilium/issues/26756 |