| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
ocfs2: add bounds checking to ocfs2_xattr_find_entry()
Add a paranoia check to make sure it doesn't stray beyond valid memory
region containing ocfs2 xattr entries when scanning for a match. It will
prevent out-of-bound access in case of crafted images. |
| In the Linux kernel, the following vulnerability has been resolved:
smack: tcp: ipv4, fix incorrect labeling
Currently, Smack mirrors the label of incoming tcp/ipv4 connections:
when a label 'foo' connects to a label 'bar' with tcp/ipv4,
'foo' always gets 'foo' in returned ipv4 packets. So,
1) returned packets are incorrectly labeled ('foo' instead of 'bar')
2) 'bar' can write to 'foo' without being authorized to write.
Here is a scenario how to see this:
* Take two machines, let's call them C and S,
with active Smack in the default state
(no settings, no rules, no labeled hosts, only builtin labels)
* At S, add Smack rule 'foo bar w'
(labels 'foo' and 'bar' are instantiated at S at this moment)
* At S, at label 'bar', launch a program
that listens for incoming tcp/ipv4 connections
* From C, at label 'foo', connect to the listener at S.
(label 'foo' is instantiated at C at this moment)
Connection succeedes and works.
* Send some data in both directions.
* Collect network traffic of this connection.
All packets in both directions are labeled with the CIPSO
of the label 'foo'. Hence, label 'bar' writes to 'foo' without
being authorized, and even without ever being known at C.
If anybody cares: exactly the same happens with DCCP.
This behavior 1st manifested in release 2.6.29.4 (see Fixes below)
and it looks unintentional. At least, no explanation was provided.
I changed returned packes label into the 'bar',
to bring it into line with the Smack documentation claims. |
| In the Linux kernel, the following vulnerability has been resolved:
um: line: always fill *error_out in setup_one_line()
The pointer isn't initialized by callers, but I have
encountered cases where it's still printed; initialize
it in all possible cases in setup_one_line(). |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amd/pm: Fix negative array index read
Avoid using the negative values
for clk_idex as an index into an array pptable->DpmDescriptor.
V2: fix clk_index return check (Tim Huang) |
| In the Linux kernel, the following vulnerability has been resolved:
powerpc/rtas: Prevent Spectre v1 gadget construction in sys_rtas()
Smatch warns:
arch/powerpc/kernel/rtas.c:1932 __do_sys_rtas() warn: potential
spectre issue 'args.args' [r] (local cap)
The 'nargs' and 'nret' locals come directly from a user-supplied
buffer and are used as indexes into a small stack-based array and as
inputs to copy_to_user() after they are subject to bounds checks.
Use array_index_nospec() after the bounds checks to clamp these values
for speculative execution. |
| In the Linux kernel, the following vulnerability has been resolved:
hwmon: (adc128d818) Fix underflows seen when writing limit attributes
DIV_ROUND_CLOSEST() after kstrtol() results in an underflow if a large
negative number such as -9223372036854775808 is provided by the user.
Fix it by reordering clamp_val() and DIV_ROUND_CLOSEST() operations. |
| In the Linux kernel, the following vulnerability has been resolved:
HID: cougar: fix slab-out-of-bounds Read in cougar_report_fixup
report_fixup for the Cougar 500k Gaming Keyboard was not verifying
that the report descriptor size was correct before accessing it |
| In the Linux kernel, the following vulnerability has been resolved:
Squashfs: sanity check symbolic link size
Syzkiller reports a "KMSAN: uninit-value in pick_link" bug.
This is caused by an uninitialised page, which is ultimately caused
by a corrupted symbolic link size read from disk.
The reason why the corrupted symlink size causes an uninitialised
page is due to the following sequence of events:
1. squashfs_read_inode() is called to read the symbolic
link from disk. This assigns the corrupted value
3875536935 to inode->i_size.
2. Later squashfs_symlink_read_folio() is called, which assigns
this corrupted value to the length variable, which being a
signed int, overflows producing a negative number.
3. The following loop that fills in the page contents checks that
the copied bytes is less than length, which being negative means
the loop is skipped, producing an uninitialised page.
This patch adds a sanity check which checks that the symbolic
link size is not larger than expected.
--
V2: fix spelling mistake. |
| In the Linux kernel, the following vulnerability has been resolved:
of/irq: Prevent device address out-of-bounds read in interrupt map walk
When of_irq_parse_raw() is invoked with a device address smaller than
the interrupt parent node (from #address-cells property), KASAN detects
the following out-of-bounds read when populating the initial match table
(dyndbg="func of_irq_parse_* +p"):
OF: of_irq_parse_one: dev=/soc@0/picasso/watchdog, index=0
OF: parent=/soc@0/pci@878000000000/gpio0@17,0, intsize=2
OF: intspec=4
OF: of_irq_parse_raw: ipar=/soc@0/pci@878000000000/gpio0@17,0, size=2
OF: -> addrsize=3
==================================================================
BUG: KASAN: slab-out-of-bounds in of_irq_parse_raw+0x2b8/0x8d0
Read of size 4 at addr ffffff81beca5608 by task bash/764
CPU: 1 PID: 764 Comm: bash Tainted: G O 6.1.67-484c613561-nokia_sm_arm64 #1
Hardware name: Unknown Unknown Product/Unknown Product, BIOS 2023.01-12.24.03-dirty 01/01/2023
Call trace:
dump_backtrace+0xdc/0x130
show_stack+0x1c/0x30
dump_stack_lvl+0x6c/0x84
print_report+0x150/0x448
kasan_report+0x98/0x140
__asan_load4+0x78/0xa0
of_irq_parse_raw+0x2b8/0x8d0
of_irq_parse_one+0x24c/0x270
parse_interrupts+0xc0/0x120
of_fwnode_add_links+0x100/0x2d0
fw_devlink_parse_fwtree+0x64/0xc0
device_add+0xb38/0xc30
of_device_add+0x64/0x90
of_platform_device_create_pdata+0xd0/0x170
of_platform_bus_create+0x244/0x600
of_platform_notify+0x1b0/0x254
blocking_notifier_call_chain+0x9c/0xd0
__of_changeset_entry_notify+0x1b8/0x230
__of_changeset_apply_notify+0x54/0xe4
of_overlay_fdt_apply+0xc04/0xd94
...
The buggy address belongs to the object at ffffff81beca5600
which belongs to the cache kmalloc-128 of size 128
The buggy address is located 8 bytes inside of
128-byte region [ffffff81beca5600, ffffff81beca5680)
The buggy address belongs to the physical page:
page:00000000230d3d03 refcount:1 mapcount:0 mapping:0000000000000000 index:0x0 pfn:0x1beca4
head:00000000230d3d03 order:1 compound_mapcount:0 compound_pincount:0
flags: 0x8000000000010200(slab|head|zone=2)
raw: 8000000000010200 0000000000000000 dead000000000122 ffffff810000c300
raw: 0000000000000000 0000000000200020 00000001ffffffff 0000000000000000
page dumped because: kasan: bad access detected
Memory state around the buggy address:
ffffff81beca5500: 04 fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc
ffffff81beca5580: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc
>ffffff81beca5600: 00 fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc
^
ffffff81beca5680: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc
ffffff81beca5700: 00 00 00 00 00 00 fc fc fc fc fc fc fc fc fc fc
==================================================================
OF: -> got it !
Prevent the out-of-bounds read by copying the device address into a
buffer of sufficient size. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amd/pm: fix the Out-of-bounds read warning
using index i - 1U may beyond element index
for mc_data[] when i = 0. |
| In the Linux kernel, the following vulnerability has been resolved:
parisc: fix a possible DMA corruption
ARCH_DMA_MINALIGN was defined as 16 - this is too small - it may be
possible that two unrelated 16-byte allocations share a cache line. If
one of these allocations is written using DMA and the other is written
using cached write, the value that was written with DMA may be
corrupted.
This commit changes ARCH_DMA_MINALIGN to be 128 on PA20 and 32 on PA1.1 -
that's the largest possible cache line size.
As different parisc microarchitectures have different cache line size, we
define arch_slab_minalign(), cache_line_size() and
dma_get_cache_alignment() so that the kernel may tune slab cache
parameters dynamically, based on the detected cache line size. |
| In the Linux kernel, the following vulnerability has been resolved:
fou: remove warn in gue_gro_receive on unsupported protocol
Drop the WARN_ON_ONCE inn gue_gro_receive if the encapsulated type is
not known or does not have a GRO handler.
Such a packet is easily constructed. Syzbot generates them and sets
off this warning.
Remove the warning as it is expected and not actionable.
The warning was previously reduced from WARN_ON to WARN_ON_ONCE in
commit 270136613bf7 ("fou: Do WARN_ON_ONCE in gue_gro_receive for bad
proto callbacks"). |
| In the Linux kernel, the following vulnerability has been resolved:
media: xc2028: avoid use-after-free in load_firmware_cb()
syzkaller reported use-after-free in load_firmware_cb() [1].
The reason is because the module allocated a struct tuner in tuner_probe(),
and then the module initialization failed, the struct tuner was released.
A worker which created during module initialization accesses this struct
tuner later, it caused use-after-free.
The process is as follows:
task-6504 worker_thread
tuner_probe <= alloc dvb_frontend [2]
...
request_firmware_nowait <= create a worker
...
tuner_remove <= free dvb_frontend
...
request_firmware_work_func <= the firmware is ready
load_firmware_cb <= but now the dvb_frontend has been freed
To fix the issue, check the dvd_frontend in load_firmware_cb(), if it is
null, report a warning and just return.
[1]:
==================================================================
BUG: KASAN: use-after-free in load_firmware_cb+0x1310/0x17a0
Read of size 8 at addr ffff8000d7ca2308 by task kworker/2:3/6504
Call trace:
load_firmware_cb+0x1310/0x17a0
request_firmware_work_func+0x128/0x220
process_one_work+0x770/0x1824
worker_thread+0x488/0xea0
kthread+0x300/0x430
ret_from_fork+0x10/0x20
Allocated by task 6504:
kzalloc
tuner_probe+0xb0/0x1430
i2c_device_probe+0x92c/0xaf0
really_probe+0x678/0xcd0
driver_probe_device+0x280/0x370
__device_attach_driver+0x220/0x330
bus_for_each_drv+0x134/0x1c0
__device_attach+0x1f4/0x410
device_initial_probe+0x20/0x30
bus_probe_device+0x184/0x200
device_add+0x924/0x12c0
device_register+0x24/0x30
i2c_new_device+0x4e0/0xc44
v4l2_i2c_new_subdev_board+0xbc/0x290
v4l2_i2c_new_subdev+0xc8/0x104
em28xx_v4l2_init+0x1dd0/0x3770
Freed by task 6504:
kfree+0x238/0x4e4
tuner_remove+0x144/0x1c0
i2c_device_remove+0xc8/0x290
__device_release_driver+0x314/0x5fc
device_release_driver+0x30/0x44
bus_remove_device+0x244/0x490
device_del+0x350/0x900
device_unregister+0x28/0xd0
i2c_unregister_device+0x174/0x1d0
v4l2_device_unregister+0x224/0x380
em28xx_v4l2_init+0x1d90/0x3770
The buggy address belongs to the object at ffff8000d7ca2000
which belongs to the cache kmalloc-2k of size 2048
The buggy address is located 776 bytes inside of
2048-byte region [ffff8000d7ca2000, ffff8000d7ca2800)
The buggy address belongs to the page:
page:ffff7fe00035f280 count:1 mapcount:0 mapping:ffff8000c001f000 index:0x0
flags: 0x7ff800000000100(slab)
raw: 07ff800000000100 ffff7fe00049d880 0000000300000003 ffff8000c001f000
raw: 0000000000000000 0000000080100010 00000001ffffffff 0000000000000000
page dumped because: kasan: bad access detected
Memory state around the buggy address:
ffff8000d7ca2200: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
ffff8000d7ca2280: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
>ffff8000d7ca2300: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
^
ffff8000d7ca2380: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
ffff8000d7ca2400: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
==================================================================
[2]
Actually, it is allocated for struct tuner, and dvb_frontend is inside. |
| In the Linux kernel, the following vulnerability has been resolved:
usb: vhci-hcd: Do not drop references before new references are gained
At a few places the driver carries stale pointers
to references that can still be used. Make sure that does not happen.
This strictly speaking closes ZDI-CAN-22273, though there may be
similar races in the driver. |
| In the Linux kernel, the following vulnerability has been resolved:
exec: Fix ToCToU between perm check and set-uid/gid usage
When opening a file for exec via do_filp_open(), permission checking is
done against the file's metadata at that moment, and on success, a file
pointer is passed back. Much later in the execve() code path, the file
metadata (specifically mode, uid, and gid) is used to determine if/how
to set the uid and gid. However, those values may have changed since the
permissions check, meaning the execution may gain unintended privileges.
For example, if a file could change permissions from executable and not
set-id:
---------x 1 root root 16048 Aug 7 13:16 target
to set-id and non-executable:
---S------ 1 root root 16048 Aug 7 13:16 target
it is possible to gain root privileges when execution should have been
disallowed.
While this race condition is rare in real-world scenarios, it has been
observed (and proven exploitable) when package managers are updating
the setuid bits of installed programs. Such files start with being
world-executable but then are adjusted to be group-exec with a set-uid
bit. For example, "chmod o-x,u+s target" makes "target" executable only
by uid "root" and gid "cdrom", while also becoming setuid-root:
-rwxr-xr-x 1 root cdrom 16048 Aug 7 13:16 target
becomes:
-rwsr-xr-- 1 root cdrom 16048 Aug 7 13:16 target
But racing the chmod means users without group "cdrom" membership can
get the permission to execute "target" just before the chmod, and when
the chmod finishes, the exec reaches brpm_fill_uid(), and performs the
setuid to root, violating the expressed authorization of "only cdrom
group members can setuid to root".
Re-check that we still have execute permissions in case the metadata
has changed. It would be better to keep a copy from the perm-check time,
but until we can do that refactoring, the least-bad option is to do a
full inode_permission() call (under inode lock). It is understood that
this is safe against dead-locks, but hardly optimal. |
| In the Linux kernel, the following vulnerability has been resolved:
dev/parport: fix the array out-of-bounds risk
Fixed array out-of-bounds issues caused by sprintf
by replacing it with snprintf for safer data copying,
ensuring the destination buffer is not overflowed.
Below is the stack trace I encountered during the actual issue:
[ 66.575408s] [pid:5118,cpu4,QThread,4]Kernel panic - not syncing: stack-protector:
Kernel stack is corrupted in: do_hardware_base_addr+0xcc/0xd0 [parport]
[ 66.575408s] [pid:5118,cpu4,QThread,5]CPU: 4 PID: 5118 Comm:
QThread Tainted: G S W O 5.10.97-arm64-desktop #7100.57021.2
[ 66.575439s] [pid:5118,cpu4,QThread,6]TGID: 5087 Comm: EFileApp
[ 66.575439s] [pid:5118,cpu4,QThread,7]Hardware name: HUAWEI HUAWEI QingYun
PGUX-W515x-B081/SP1PANGUXM, BIOS 1.00.07 04/29/2024
[ 66.575439s] [pid:5118,cpu4,QThread,8]Call trace:
[ 66.575469s] [pid:5118,cpu4,QThread,9] dump_backtrace+0x0/0x1c0
[ 66.575469s] [pid:5118,cpu4,QThread,0] show_stack+0x14/0x20
[ 66.575469s] [pid:5118,cpu4,QThread,1] dump_stack+0xd4/0x10c
[ 66.575500s] [pid:5118,cpu4,QThread,2] panic+0x1d8/0x3bc
[ 66.575500s] [pid:5118,cpu4,QThread,3] __stack_chk_fail+0x2c/0x38
[ 66.575500s] [pid:5118,cpu4,QThread,4] do_hardware_base_addr+0xcc/0xd0 [parport] |
| In the Linux kernel, the following vulnerability has been resolved:
nilfs2: fix inode number range checks
Patch series "nilfs2: fix potential issues related to reserved inodes".
This series fixes one use-after-free issue reported by syzbot, caused by
nilfs2's internal inode being exposed in the namespace on a corrupted
filesystem, and a couple of flaws that cause problems if the starting
number of non-reserved inodes written in the on-disk super block is
intentionally (or corruptly) changed from its default value.
This patch (of 3):
In the current implementation of nilfs2, "nilfs->ns_first_ino", which
gives the first non-reserved inode number, is read from the superblock,
but its lower limit is not checked.
As a result, if a number that overlaps with the inode number range of
reserved inodes such as the root directory or metadata files is set in the
super block parameter, the inode number test macros (NILFS_MDT_INODE and
NILFS_VALID_INODE) will not function properly.
In addition, these test macros use left bit-shift calculations using with
the inode number as the shift count via the BIT macro, but the result of a
shift calculation that exceeds the bit width of an integer is undefined in
the C specification, so if "ns_first_ino" is set to a large value other
than the default value NILFS_USER_INO (=11), the macros may potentially
malfunction depending on the environment.
Fix these issues by checking the lower bound of "nilfs->ns_first_ino" and
by preventing bit shifts equal to or greater than the NILFS_USER_INO
constant in the inode number test macros.
Also, change the type of "ns_first_ino" from signed integer to unsigned
integer to avoid the need for type casting in comparisons such as the
lower bound check introduced this time. |
| In the Linux kernel, the following vulnerability has been resolved:
nilfs2: add missing check for inode numbers on directory entries
Syzbot reported that mounting and unmounting a specific pattern of
corrupted nilfs2 filesystem images causes a use-after-free of metadata
file inodes, which triggers a kernel bug in lru_add_fn().
As Jan Kara pointed out, this is because the link count of a metadata file
gets corrupted to 0, and nilfs_evict_inode(), which is called from iput(),
tries to delete that inode (ifile inode in this case).
The inconsistency occurs because directories containing the inode numbers
of these metadata files that should not be visible in the namespace are
read without checking.
Fix this issue by treating the inode numbers of these internal files as
errors in the sanity check helper when reading directory folios/pages.
Also thanks to Hillf Danton and Matthew Wilcox for their initial mm-layer
analysis. |
| In the Linux kernel, the following vulnerability has been resolved:
net/iucv: Avoid explicit cpumask var allocation on stack
For CONFIG_CPUMASK_OFFSTACK=y kernel, explicit allocation of cpumask
variable on stack is not recommended since it can cause potential stack
overflow.
Instead, kernel code should always use *cpumask_var API(s) to allocate
cpumask var in config-neutral way, leaving allocation strategy to
CONFIG_CPUMASK_OFFSTACK.
Use *cpumask_var API(s) to address it. |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: qla2xxx: Array index may go out of bound
Klocwork reports array 'vha->host_str' of size 16 may use index value(s)
16..19. Use snprintf() instead of sprintf(). |