| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| A flaw was discovered in the X.Org X server’s X Keyboard (Xkb) extension when handling client resource cleanup. The software frees certain data structures without properly detaching related resources, leading to a use-after-free condition. This can cause memory corruption or a crash when affected clients disconnect. |
| A flaw was found in the X.Org X server and Xwayland when processing X11 Present extension notifications. Improper error handling during notification creation can leave dangling pointers that lead to a use-after-free condition. This can cause memory corruption or a crash, potentially allowing an attacker to execute arbitrary code or cause a denial of service. |
| In the Linux kernel, the following vulnerability has been resolved:
s390/entry: Mark IRQ entries to fix stack depot warnings
The stack depot filters out everything outside of the top interrupt
context as an uninteresting or irrelevant part of the stack traces. This
helps with stack trace de-duplication, avoiding an explosion of saved
stack traces that share the same IRQ context code path but originate
from different randomly interrupted points, eventually exhausting the
stack depot.
Filtering uses in_irqentry_text() to identify functions within the
.irqentry.text and .softirqentry.text sections, which then become the
last stack trace entries being saved.
While __do_softirq() is placed into the .softirqentry.text section by
common code, populating .irqentry.text is architecture-specific.
Currently, the .irqentry.text section on s390 is empty, which prevents
stack depot filtering and de-duplication and could result in warnings
like:
Stack depot reached limit capacity
WARNING: CPU: 0 PID: 286113 at lib/stackdepot.c:252 depot_alloc_stack+0x39a/0x3c8
with PREEMPT and KASAN enabled.
Fix this by moving the IO/EXT interrupt handlers from .kprobes.text into
the .irqentry.text section and updating the kprobes blacklist to include
the .irqentry.text section.
This is done only for asynchronous interrupts and explicitly not for
program checks, which are synchronous and where the context beyond the
program check is important to preserve. Despite machine checks being
somewhat in between, they are extremely rare, and preserving context
when possible is also of value.
SVCs and Restart Interrupts are not relevant, one being always at the
boundary to user space and the other being a one-time thing.
IRQ entries filtering is also optionally used in ftrace function graph,
where the same logic applies. |
| In the Linux kernel, the following vulnerability has been resolved:
driver core: bus: Fix double free in driver API bus_register()
For bus_register(), any error which happens after kset_register() will
cause that @priv are freed twice, fixed by setting @priv with NULL after
the first free. |
| This CVE ID has been rejected or withdrawn by its CVE Numbering Authority. |
| In the Linux kernel, the following vulnerability has been resolved:
kobject: Add sanity check for kset->kobj.ktype in kset_register()
When I register a kset in the following way:
static struct kset my_kset;
kobject_set_name(&my_kset.kobj, "my_kset");
ret = kset_register(&my_kset);
A null pointer dereference exception is occurred:
[ 4453.568337] Unable to handle kernel NULL pointer dereference at \
virtual address 0000000000000028
... ...
[ 4453.810361] Call trace:
[ 4453.813062] kobject_get_ownership+0xc/0x34
[ 4453.817493] kobject_add_internal+0x98/0x274
[ 4453.822005] kset_register+0x5c/0xb4
[ 4453.825820] my_kobj_init+0x44/0x1000 [my_kset]
... ...
Because I didn't initialize my_kset.kobj.ktype.
According to the description in Documentation/core-api/kobject.rst:
- A ktype is the type of object that embeds a kobject. Every structure
that embeds a kobject needs a corresponding ktype.
So add sanity check to make sure kset->kobj.ktype is not NULL. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: mac80211: fix mbss changed flags corruption on 32 bit systems
On 32-bit systems, the size of an unsigned long is 4 bytes,
while a u64 is 8 bytes. Therefore, when using
or_each_set_bit(bit, &bits, sizeof(changed) * BITS_PER_BYTE),
the code is incorrectly searching for a bit in a 32-bit
variable that is expected to be 64 bits in size,
leading to incorrect bit finding.
Solution: Ensure that the size of the bits variable is correctly
adjusted for each architecture.
Call Trace:
? show_regs+0x54/0x58
? __warn+0x6b/0xd4
? ieee80211_link_info_change_notify+0xcc/0xd4 [mac80211]
? report_bug+0x113/0x150
? exc_overflow+0x30/0x30
? handle_bug+0x27/0x44
? exc_invalid_op+0x18/0x50
? handle_exception+0xf6/0xf6
? exc_overflow+0x30/0x30
? ieee80211_link_info_change_notify+0xcc/0xd4 [mac80211]
? exc_overflow+0x30/0x30
? ieee80211_link_info_change_notify+0xcc/0xd4 [mac80211]
? ieee80211_mesh_work+0xff/0x260 [mac80211]
? cfg80211_wiphy_work+0x72/0x98 [cfg80211]
? process_one_work+0xf1/0x1fc
? worker_thread+0x2c0/0x3b4
? kthread+0xc7/0xf0
? mod_delayed_work_on+0x4c/0x4c
? kthread_complete_and_exit+0x14/0x14
? ret_from_fork+0x24/0x38
? kthread_complete_and_exit+0x14/0x14
? ret_from_fork_asm+0xf/0x14
? entry_INT80_32+0xf0/0xf0
[restore no-op path for no changes] |
| In the Linux kernel, the following vulnerability has been resolved:
btrfs: flush delalloc workers queue before stopping cleaner kthread during unmount
During the unmount path, at close_ctree(), we first stop the cleaner
kthread, using kthread_stop() which frees the associated task_struct, and
then stop and destroy all the work queues. However after we stopped the
cleaner we may still have a worker from the delalloc_workers queue running
inode.c:submit_compressed_extents(), which calls btrfs_add_delayed_iput(),
which in turn tries to wake up the cleaner kthread - which was already
destroyed before, resulting in a use-after-free on the task_struct.
Syzbot reported this with the following stack traces:
BUG: KASAN: slab-use-after-free in __lock_acquire+0x78/0x2100 kernel/locking/lockdep.c:5089
Read of size 8 at addr ffff8880259d2818 by task kworker/u8:3/52
CPU: 1 UID: 0 PID: 52 Comm: kworker/u8:3 Not tainted 6.13.0-rc1-syzkaller-00002-gcdd30ebb1b9f #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 09/13/2024
Workqueue: btrfs-delalloc btrfs_work_helper
Call Trace:
<TASK>
__dump_stack lib/dump_stack.c:94 [inline]
dump_stack_lvl+0x241/0x360 lib/dump_stack.c:120
print_address_description mm/kasan/report.c:378 [inline]
print_report+0x169/0x550 mm/kasan/report.c:489
kasan_report+0x143/0x180 mm/kasan/report.c:602
__lock_acquire+0x78/0x2100 kernel/locking/lockdep.c:5089
lock_acquire+0x1ed/0x550 kernel/locking/lockdep.c:5849
__raw_spin_lock_irqsave include/linux/spinlock_api_smp.h:110 [inline]
_raw_spin_lock_irqsave+0xd5/0x120 kernel/locking/spinlock.c:162
class_raw_spinlock_irqsave_constructor include/linux/spinlock.h:551 [inline]
try_to_wake_up+0xc2/0x1470 kernel/sched/core.c:4205
submit_compressed_extents+0xdf/0x16e0 fs/btrfs/inode.c:1615
run_ordered_work fs/btrfs/async-thread.c:288 [inline]
btrfs_work_helper+0x96f/0xc40 fs/btrfs/async-thread.c:324
process_one_work kernel/workqueue.c:3229 [inline]
process_scheduled_works+0xa66/0x1840 kernel/workqueue.c:3310
worker_thread+0x870/0xd30 kernel/workqueue.c:3391
kthread+0x2f0/0x390 kernel/kthread.c:389
ret_from_fork+0x4b/0x80 arch/x86/kernel/process.c:147
ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:244
</TASK>
Allocated by task 2:
kasan_save_stack mm/kasan/common.c:47 [inline]
kasan_save_track+0x3f/0x80 mm/kasan/common.c:68
unpoison_slab_object mm/kasan/common.c:319 [inline]
__kasan_slab_alloc+0x66/0x80 mm/kasan/common.c:345
kasan_slab_alloc include/linux/kasan.h:250 [inline]
slab_post_alloc_hook mm/slub.c:4104 [inline]
slab_alloc_node mm/slub.c:4153 [inline]
kmem_cache_alloc_node_noprof+0x1d9/0x380 mm/slub.c:4205
alloc_task_struct_node kernel/fork.c:180 [inline]
dup_task_struct+0x57/0x8c0 kernel/fork.c:1113
copy_process+0x5d1/0x3d50 kernel/fork.c:2225
kernel_clone+0x223/0x870 kernel/fork.c:2807
kernel_thread+0x1bc/0x240 kernel/fork.c:2869
create_kthread kernel/kthread.c:412 [inline]
kthreadd+0x60d/0x810 kernel/kthread.c:767
ret_from_fork+0x4b/0x80 arch/x86/kernel/process.c:147
ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:244
Freed by task 24:
kasan_save_stack mm/kasan/common.c:47 [inline]
kasan_save_track+0x3f/0x80 mm/kasan/common.c:68
kasan_save_free_info+0x40/0x50 mm/kasan/generic.c:582
poison_slab_object mm/kasan/common.c:247 [inline]
__kasan_slab_free+0x59/0x70 mm/kasan/common.c:264
kasan_slab_free include/linux/kasan.h:233 [inline]
slab_free_hook mm/slub.c:2338 [inline]
slab_free mm/slub.c:4598 [inline]
kmem_cache_free+0x195/0x410 mm/slub.c:4700
put_task_struct include/linux/sched/task.h:144 [inline]
delayed_put_task_struct+0x125/0x300 kernel/exit.c:227
rcu_do_batch kernel/rcu/tree.c:2567 [inline]
rcu_core+0xaaa/0x17a0 kernel/rcu/tree.c:2823
handle_softirqs+0x2d4/0x9b0 kernel/softirq.c:554
run_ksoftirqd+0xca/0x130 kernel/softirq.c:943
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
jffs2: Prevent rtime decompress memory corruption
The rtime decompression routine does not fully check bounds during the
entirety of the decompression pass and can corrupt memory outside the
decompression buffer if the compressed data is corrupted. This adds the
required check to prevent this failure mode. |
| In the Linux kernel, the following vulnerability has been resolved:
s390/cpum_sf: Handle CPU hotplug remove during sampling
CPU hotplug remove handling triggers the following function
call sequence:
CPUHP_AP_PERF_S390_SF_ONLINE --> s390_pmu_sf_offline_cpu()
...
CPUHP_AP_PERF_ONLINE --> perf_event_exit_cpu()
The s390 CPUMF sampling CPU hotplug handler invokes:
s390_pmu_sf_offline_cpu()
+--> cpusf_pmu_setup()
+--> setup_pmc_cpu()
+--> deallocate_buffers()
This function de-allocates all sampling data buffers (SDBs) allocated
for that CPU at event initialization. It also clears the
PMU_F_RESERVED bit. The CPU is gone and can not be sampled.
With the event still being active on the removed CPU, the CPU event
hotplug support in kernel performance subsystem triggers the
following function calls on the removed CPU:
perf_event_exit_cpu()
+--> perf_event_exit_cpu_context()
+--> __perf_event_exit_context()
+--> __perf_remove_from_context()
+--> event_sched_out()
+--> cpumsf_pmu_del()
+--> cpumsf_pmu_stop()
+--> hw_perf_event_update()
to stop and remove the event. During removal of the event, the
sampling device driver tries to read out the remaining samples from
the sample data buffers (SDBs). But they have already been freed
(and may have been re-assigned). This may lead to a use after free
situation in which case the samples are most likely invalid. In the
best case the memory has not been reassigned and still contains
valid data.
Remedy this situation and check if the CPU is still in reserved
state (bit PMU_F_RESERVED set). In this case the SDBs have not been
released an contain valid data. This is always the case when
the event is removed (and no CPU hotplug off occured).
If the PMU_F_RESERVED bit is not set, the SDB buffers are gone. |
| In the Linux kernel, the following vulnerability has been resolved:
btrfs: fix use-after-free when COWing tree bock and tracing is enabled
When a COWing a tree block, at btrfs_cow_block(), and we have the
tracepoint trace_btrfs_cow_block() enabled and preemption is also enabled
(CONFIG_PREEMPT=y), we can trigger a use-after-free in the COWed extent
buffer while inside the tracepoint code. This is because in some paths
that call btrfs_cow_block(), such as btrfs_search_slot(), we are holding
the last reference on the extent buffer @buf so btrfs_force_cow_block()
drops the last reference on the @buf extent buffer when it calls
free_extent_buffer_stale(buf), which schedules the release of the extent
buffer with RCU. This means that if we are on a kernel with preemption,
the current task may be preempted before calling trace_btrfs_cow_block()
and the extent buffer already released by the time trace_btrfs_cow_block()
is called, resulting in a use-after-free.
Fix this by moving the trace_btrfs_cow_block() from btrfs_cow_block() to
btrfs_force_cow_block() before the COWed extent buffer is freed.
This also has a side effect of invoking the tracepoint in the tree defrag
code, at defrag.c:btrfs_realloc_node(), since btrfs_force_cow_block() is
called there, but this is fine and it was actually missing there. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/dp_mst: Fix MST sideband message body length check
Fix the MST sideband message body length check, which must be at least 1
byte accounting for the message body CRC (aka message data CRC) at the
end of the message.
This fixes a case where an MST branch device returns a header with a
correct header CRC (indicating a correctly received body length), with
the body length being incorrectly set to 0. This will later lead to a
memory corruption in drm_dp_sideband_append_payload() and the following
errors in dmesg:
UBSAN: array-index-out-of-bounds in drivers/gpu/drm/display/drm_dp_mst_topology.c:786:25
index -1 is out of range for type 'u8 [48]'
Call Trace:
drm_dp_sideband_append_payload+0x33d/0x350 [drm_display_helper]
drm_dp_get_one_sb_msg+0x3ce/0x5f0 [drm_display_helper]
drm_dp_mst_hpd_irq_handle_event+0xc8/0x1580 [drm_display_helper]
memcpy: detected field-spanning write (size 18446744073709551615) of single field "&msg->msg[msg->curlen]" at drivers/gpu/drm/display/drm_dp_mst_topology.c:791 (size 256)
Call Trace:
drm_dp_sideband_append_payload+0x324/0x350 [drm_display_helper]
drm_dp_get_one_sb_msg+0x3ce/0x5f0 [drm_display_helper]
drm_dp_mst_hpd_irq_handle_event+0xc8/0x1580 [drm_display_helper] |
| In the Linux kernel, the following vulnerability has been resolved:
af_packet: avoid erroring out after sock_init_data() in packet_create()
After sock_init_data() the allocated sk object is attached to the provided
sock object. On error, packet_create() frees the sk object leaving the
dangling pointer in the sock object on return. Some other code may try
to use this pointer and cause use-after-free. |
| In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: L2CAP: do not leave dangling sk pointer on error in l2cap_sock_create()
bt_sock_alloc() allocates the sk object and attaches it to the provided
sock object. On error l2cap_sock_alloc() frees the sk object, but the
dangling pointer is still attached to the sock object, which may create
use-after-free in other code. |
| In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: RFCOMM: avoid leaving dangling sk pointer in rfcomm_sock_alloc()
bt_sock_alloc() attaches allocated sk object to the provided sock object.
If rfcomm_dlc_alloc() fails, we release the sk object, but leave the
dangling pointer in the sock object, which may cause use-after-free.
Fix this by swapping calls to bt_sock_alloc() and rfcomm_dlc_alloc(). |
| In the Linux kernel, the following vulnerability has been resolved:
net: af_can: do not leave a dangling sk pointer in can_create()
On error can_create() frees the allocated sk object, but sock_init_data()
has already attached it to the provided sock object. This will leave a
dangling sk pointer in the sock object and may cause use-after-free later. |
| In the Linux kernel, the following vulnerability has been resolved:
net: ieee802154: do not leave a dangling sk pointer in ieee802154_create()
sock_init_data() attaches the allocated sk object to the provided sock
object. If ieee802154_create() fails later, the allocated sk object is
freed, but the dangling pointer remains in the provided sock object, which
may allow use-after-free.
Clear the sk pointer in the sock object on error. |
| In the Linux kernel, the following vulnerability has been resolved:
jfs: array-index-out-of-bounds fix in dtReadFirst
The value of stbl can be sometimes out of bounds due
to a bad filesystem. Added a check with appopriate return
of error code in that case. |
| In the Linux kernel, the following vulnerability has been resolved:
jfs: fix shift-out-of-bounds in dbSplit
When dmt_budmin is less than zero, it causes errors
in the later stages. Added a check to return an error beforehand
in dbAllocCtl itself. |
| In the Linux kernel, the following vulnerability has been resolved:
jfs: fix array-index-out-of-bounds in jfs_readdir
The stbl might contain some invalid values. Added a check to
return error code in that case. |