| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| DO NOT USE THIS CANDIDATE NUMBER. ConsultIDs: none. Reason: This candidate was withdrawn by its CNA. Further investigation showed that it was not a security issue. Notes: none. |
| DO NOT USE THIS CANDIDATE NUMBER. ConsultIDs: none. Reason: This candidate was withdrawn by its CNA. Further investigation showed that it was not a security issue. Notes: none. |
| DO NOT USE THIS CANDIDATE NUMBER. ConsultIDs: CVE-2022-32250. Reason: This candidate is a duplicate of CVE-2022-32250. Notes: All CVE users should reference CVE-2022-32250 instead of this candidate. All references and descriptions in this candidate have been removed to prevent accidental usage. |
| DO NOT USE THIS CANDIDATE NUMBER. ConsultIDs: none. Reason: This candidate was withdrawn by its CNA. Further investigation showed that it was not a security issue. Notes: none. |
| A denial of service vulnerability in the Range header parsing component of Rack >= 1.5.0. A Carefully crafted input can cause the Range header parsing component in Rack to take an unexpected amount of time, possibly resulting in a denial of service attack vector. Any applications that deal with Range requests (such as streaming applications, or applications that serve files) may be impacted. |
| There is a denial of service vulnerability in the Content-Disposition parsingcomponent of Rack fixed in 2.0.9.2, 2.1.4.2, 2.2.4.1, 3.0.0.1. This could allow an attacker to craft an input that can cause Content-Disposition header parsing in Rackto take an unexpected amount of time, possibly resulting in a denial ofservice attack vector. This header is used typically used in multipartparsing. Any applications that parse multipart posts using Rack (virtuallyall Rails applications) are impacted. |
| A denial of service vulnerability in the multipart parsing component of Rack fixed in 2.0.9.2, 2.1.4.2, 2.2.4.1 and 3.0.0.1 could allow an attacker tocraft input that can cause RFC2183 multipart boundary parsing in Rack to take an unexpected amount of time, possibly resulting in a denial of service attack vector. Any applications that parse multipart posts using Rack (virtually all Rails applications) are impacted. |
| There's a possible information leak / session hijack vulnerability in Rack (RubyGem rack). This vulnerability is patched in versions 1.6.12 and 2.0.8. Attackers may be able to find and hijack sessions by using timing attacks targeting the session id. Session ids are usually stored and indexed in a database that uses some kind of scheme for speeding up lookups of that session id. By carefully measuring the amount of time it takes to look up a session, an attacker may be able to find a valid session id and hijack the session. The session id itself may be generated randomly, but the way the session is indexed by the backing store does not use a secure comparison. |
| A DoS vulnerability exists in Rack <v3.0.4.2, <v2.2.6.3, <v2.1.4.3 and <v2.0.9.3 within in the Multipart MIME parsing code in which could allow an attacker to craft requests that can be abuse to cause multipart parsing to take longer than expected. |
| A race problem was found in fs/proc/task_mmu.c in the memory management sub-component in the Linux kernel. This issue may allow a local attacker with user privilege to cause a denial of service. |
| Heap based buffer overflow in binutils-gdb/bfd/libbfd.c in bfd_getl64. |
| Apache OpenOffice versions before 4.1.14 may be configured to add an empty entry to the Java class path. This may lead to run arbitrary Java code from the current directory.
|
| The Linux Kernel lockdown mode for kernel versions starting on 6.12 and above for Fedora Linux has the lockdown mode disabled without any warning. This may allow an attacker to gain access to sensitive information such kernel memory mappings, I/O ports, BPF and kprobes. Additionally unsigned modules can be loaded, leading to execution of untrusted code breaking breaking any Secure Boot protection. This vulnerability affects only Fedora Linux. |
| rust-openssl is a set of OpenSSL bindings for the Rust programming language. In affected versions `ssl::select_next_proto` can return a slice pointing into the `server` argument's buffer but with a lifetime bound to the `client` argument. In situations where the `sever` buffer's lifetime is shorter than the `client` buffer's, this can cause a use after free. This could cause the server to crash or to return arbitrary memory contents to the client. The crate`openssl` version 0.10.70 fixes the signature of `ssl::select_next_proto` to properly constrain the output buffer's lifetime to that of both input buffers. Users are advised to upgrade. In standard usage of `ssl::select_next_proto` in the callback passed to `SslContextBuilder::set_alpn_select_callback`, code is only affected if the `server` buffer is constructed *within* the callback. |
| Undici is an HTTP/1.1 client. Starting in version 4.5.0 and prior to versions 5.28.5, 6.21.1, and 7.2.3, undici uses `Math.random()` to choose the boundary for a multipart/form-data request. It is known that the output of `Math.random()` can be predicted if several of its generated values are known. If there is a mechanism in an app that sends multipart requests to an attacker-controlled website, they can use this to leak the necessary values. Therefore, an attacker can tamper with the requests going to the backend APIs if certain conditions are met. This is fixed in versions 5.28.5, 6.21.1, and 7.2.3. As a workaround, do not issue multipart requests to attacker controlled servers. |
| A use-after-free flaw was found in xgene_hwmon_remove in drivers/hwmon/xgene-hwmon.c in the Hardware Monitoring Linux Kernel Driver (xgene-hwmon). This flaw could allow a local attacker to crash the system due to a race problem. This vulnerability could even lead to a kernel information leak problem. |
| runc is a CLI tool for spawning and running containers according to the OCI specification. It was found that AppArmor can be bypassed when `/proc` inside the container is symlinked with a specific mount configuration. This issue has been fixed in runc version 1.1.5, by prohibiting symlinked `/proc`. See PR #3785 for details. users are advised to upgrade. Users unable to upgrade should avoid using an untrusted container image.
|
| runc is a CLI tool for spawning and running containers according to the OCI specification. In affected versions it was found that rootless runc makes `/sys/fs/cgroup` writable in following conditons: 1. when runc is executed inside the user namespace, and the `config.json` does not specify the cgroup namespace to be unshared (e.g.., `(docker|podman|nerdctl) run --cgroupns=host`, with Rootless Docker/Podman/nerdctl) or 2. when runc is executed outside the user namespace, and `/sys` is mounted with `rbind, ro` (e.g., `runc spec --rootless`; this condition is very rare). A container may gain the write access to user-owned cgroup hierarchy `/sys/fs/cgroup/user.slice/...` on the host . Other users's cgroup hierarchies are not affected. Users are advised to upgrade to version 1.1.5. Users unable to upgrade may unshare the cgroup namespace (`(docker|podman|nerdctl) run --cgroupns=private)`. This is the default behavior of Docker/Podman/nerdctl on cgroup v2 hosts. or add `/sys/fs/cgroup` to `maskedPaths`.
|
| Net::IMAP implements Internet Message Access Protocol (IMAP) client functionality in Ruby. Starting in version 0.3.2 and prior to versions 0.3.8, 0.4.19, and 0.5.6, there is a possibility for denial of service by memory exhaustion in `net-imap`'s response parser. At any time while the client is connected, a malicious server can send can send highly compressed `uid-set` data which is automatically read by the client's receiver thread. The response parser uses `Range#to_a` to convert the `uid-set` data into arrays of integers, with no limitation on the expanded size of the ranges. Versions 0.3.8, 0.4.19, 0.5.6, and higher fix this issue. Additional details for proper configuration of fixed versions and backward compatibility are available in the GitHub Security Advisory. |
| Incomplete system memory cleanup in SEV firmware could
allow a privileged attacker to corrupt guest private memory, potentially
resulting in a loss of data integrity. |