Search Results (16621 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2025-38540 1 Linux 1 Linux Kernel 2026-01-02 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: HID: quirks: Add quirk for 2 Chicony Electronics HP 5MP Cameras The Chicony Electronics HP 5MP Cameras (USB ID 04F2:B824 & 04F2:B82C) report a HID sensor interface that is not actually implemented. Attempting to access this non-functional sensor via iio_info causes system hangs as runtime PM tries to wake up an unresponsive sensor. Add these 2 devices to the HID ignore list since the sensor interface is non-functional by design and should not be exposed to userspace.
CVE-2025-38531 1 Linux 1 Linux Kernel 2026-01-02 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: iio: common: st_sensors: Fix use of uninitialize device structs Throughout the various probe functions &indio_dev->dev is used before it is initialized. This caused a kernel panic in st_sensors_power_enable() when the call to devm_regulator_bulk_get_enable() fails and then calls dev_err_probe() with the uninitialized device. This seems to only cause a panic with dev_err_probe(), dev_err(), dev_warn() and dev_info() don't seem to cause a panic, but are fixed as well. The issue is reported and traced here: [1]
CVE-2025-38514 1 Linux 1 Linux Kernel 2026-01-02 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: rxrpc: Fix oops due to non-existence of prealloc backlog struct If an AF_RXRPC service socket is opened and bound, but calls are preallocated, then rxrpc_alloc_incoming_call() will oops because the rxrpc_backlog struct doesn't get allocated until the first preallocation is made. Fix this by returning NULL from rxrpc_alloc_incoming_call() if there is no backlog struct. This will cause the incoming call to be aborted.
CVE-2025-38503 1 Linux 1 Linux Kernel 2026-01-02 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: btrfs: fix assertion when building free space tree When building the free space tree with the block group tree feature enabled, we can hit an assertion failure like this: BTRFS info (device loop0 state M): rebuilding free space tree assertion failed: ret == 0, in fs/btrfs/free-space-tree.c:1102 ------------[ cut here ]------------ kernel BUG at fs/btrfs/free-space-tree.c:1102! Internal error: Oops - BUG: 00000000f2000800 [#1] SMP Modules linked in: CPU: 1 UID: 0 PID: 6592 Comm: syz-executor322 Not tainted 6.15.0-rc7-syzkaller-gd7fa1af5b33e #0 PREEMPT Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 05/07/2025 pstate: 60400005 (nZCv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--) pc : populate_free_space_tree+0x514/0x518 fs/btrfs/free-space-tree.c:1102 lr : populate_free_space_tree+0x514/0x518 fs/btrfs/free-space-tree.c:1102 sp : ffff8000a4ce7600 x29: ffff8000a4ce76e0 x28: ffff0000c9bc6000 x27: ffff0000ddfff3d8 x26: ffff0000ddfff378 x25: dfff800000000000 x24: 0000000000000001 x23: ffff8000a4ce7660 x22: ffff70001499cecc x21: ffff0000e1d8c160 x20: ffff0000e1cb7800 x19: ffff0000e1d8c0b0 x18: 00000000ffffffff x17: ffff800092f39000 x16: ffff80008ad27e48 x15: ffff700011e740c0 x14: 1ffff00011e740c0 x13: 0000000000000004 x12: ffffffffffffffff x11: ffff700011e740c0 x10: 0000000000ff0100 x9 : 94ef24f55d2dbc00 x8 : 94ef24f55d2dbc00 x7 : 0000000000000001 x6 : 0000000000000001 x5 : ffff8000a4ce6f98 x4 : ffff80008f415ba0 x3 : ffff800080548ef0 x2 : 0000000000000000 x1 : 0000000100000000 x0 : 000000000000003e Call trace: populate_free_space_tree+0x514/0x518 fs/btrfs/free-space-tree.c:1102 (P) btrfs_rebuild_free_space_tree+0x14c/0x54c fs/btrfs/free-space-tree.c:1337 btrfs_start_pre_rw_mount+0xa78/0xe10 fs/btrfs/disk-io.c:3074 btrfs_remount_rw fs/btrfs/super.c:1319 [inline] btrfs_reconfigure+0x828/0x2418 fs/btrfs/super.c:1543 reconfigure_super+0x1d4/0x6f0 fs/super.c:1083 do_remount fs/namespace.c:3365 [inline] path_mount+0xb34/0xde0 fs/namespace.c:4200 do_mount fs/namespace.c:4221 [inline] __do_sys_mount fs/namespace.c:4432 [inline] __se_sys_mount fs/namespace.c:4409 [inline] __arm64_sys_mount+0x3e8/0x468 fs/namespace.c:4409 __invoke_syscall arch/arm64/kernel/syscall.c:35 [inline] invoke_syscall+0x98/0x2b8 arch/arm64/kernel/syscall.c:49 el0_svc_common+0x130/0x23c arch/arm64/kernel/syscall.c:132 do_el0_svc+0x48/0x58 arch/arm64/kernel/syscall.c:151 el0_svc+0x58/0x17c arch/arm64/kernel/entry-common.c:767 el0t_64_sync_handler+0x78/0x108 arch/arm64/kernel/entry-common.c:786 el0t_64_sync+0x198/0x19c arch/arm64/kernel/entry.S:600 Code: f0047182 91178042 528089c3 9771d47b (d4210000) ---[ end trace 0000000000000000 ]--- This happens because we are processing an empty block group, which has no extents allocated from it, there are no items for this block group, including the block group item since block group items are stored in a dedicated tree when using the block group tree feature. It also means this is the block group with the highest start offset, so there are no higher keys in the extent root, hence btrfs_search_slot_for_read() returns 1 (no higher key found). Fix this by asserting 'ret' is 0 only if the block group tree feature is not enabled, in which case we should find a block group item for the block group since it's stored in the extent root and block group item keys are greater than extent item keys (the value for BTRFS_BLOCK_GROUP_ITEM_KEY is 192 and for BTRFS_EXTENT_ITEM_KEY and BTRFS_METADATA_ITEM_KEY the values are 168 and 169 respectively). In case 'ret' is 1, we just need to add a record to the free space tree which spans the whole block group, and we can achieve this by making 'ret == 0' as the while loop's condition.
CVE-2025-38494 1 Linux 1 Linux Kernel 2026-01-02 7.0 High
In the Linux kernel, the following vulnerability has been resolved: HID: core: do not bypass hid_hw_raw_request hid_hw_raw_request() is actually useful to ensure the provided buffer and length are valid. Directly calling in the low level transport driver function bypassed those checks and allowed invalid paramto be used.
CVE-2025-38449 1 Linux 1 Linux Kernel 2026-01-02 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: drm/gem: Acquire references on GEM handles for framebuffers A GEM handle can be released while the GEM buffer object is attached to a DRM framebuffer. This leads to the release of the dma-buf backing the buffer object, if any. [1] Trying to use the framebuffer in further mode-setting operations leads to a segmentation fault. Most easily happens with driver that use shadow planes for vmap-ing the dma-buf during a page flip. An example is shown below. [ 156.791968] ------------[ cut here ]------------ [ 156.796830] WARNING: CPU: 2 PID: 2255 at drivers/dma-buf/dma-buf.c:1527 dma_buf_vmap+0x224/0x430 [...] [ 156.942028] RIP: 0010:dma_buf_vmap+0x224/0x430 [ 157.043420] Call Trace: [ 157.045898] <TASK> [ 157.048030] ? show_trace_log_lvl+0x1af/0x2c0 [ 157.052436] ? show_trace_log_lvl+0x1af/0x2c0 [ 157.056836] ? show_trace_log_lvl+0x1af/0x2c0 [ 157.061253] ? drm_gem_shmem_vmap+0x74/0x710 [ 157.065567] ? dma_buf_vmap+0x224/0x430 [ 157.069446] ? __warn.cold+0x58/0xe4 [ 157.073061] ? dma_buf_vmap+0x224/0x430 [ 157.077111] ? report_bug+0x1dd/0x390 [ 157.080842] ? handle_bug+0x5e/0xa0 [ 157.084389] ? exc_invalid_op+0x14/0x50 [ 157.088291] ? asm_exc_invalid_op+0x16/0x20 [ 157.092548] ? dma_buf_vmap+0x224/0x430 [ 157.096663] ? dma_resv_get_singleton+0x6d/0x230 [ 157.101341] ? __pfx_dma_buf_vmap+0x10/0x10 [ 157.105588] ? __pfx_dma_resv_get_singleton+0x10/0x10 [ 157.110697] drm_gem_shmem_vmap+0x74/0x710 [ 157.114866] drm_gem_vmap+0xa9/0x1b0 [ 157.118763] drm_gem_vmap_unlocked+0x46/0xa0 [ 157.123086] drm_gem_fb_vmap+0xab/0x300 [ 157.126979] drm_atomic_helper_prepare_planes.part.0+0x487/0xb10 [ 157.133032] ? lockdep_init_map_type+0x19d/0x880 [ 157.137701] drm_atomic_helper_commit+0x13d/0x2e0 [ 157.142671] ? drm_atomic_nonblocking_commit+0xa0/0x180 [ 157.147988] drm_mode_atomic_ioctl+0x766/0xe40 [...] [ 157.346424] ---[ end trace 0000000000000000 ]--- Acquiring GEM handles for the framebuffer's GEM buffer objects prevents this from happening. The framebuffer's cleanup later puts the handle references. Commit 1a148af06000 ("drm/gem-shmem: Use dma_buf from GEM object instance") triggers the segmentation fault easily by using the dma-buf field more widely. The underlying issue with reference counting has been present before. v2: - acquire the handle instead of the BO (Christian) - fix comment style (Christian) - drop the Fixes tag (Christian) - rename err_ gotos - add missing Link tag
CVE-2025-38430 2 Debian, Linux 2 Debian Linux, Linux Kernel 2026-01-02 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: nfsd: nfsd4_spo_must_allow() must check this is a v4 compound request If the request being processed is not a v4 compound request, then examining the cstate can have undefined results. This patch adds a check that the rpc procedure being executed (rq_procinfo) is the NFSPROC4_COMPOUND procedure.
CVE-2025-38425 2 Debian, Linux 2 Debian Linux, Linux Kernel 2026-01-02 7.8 High
In the Linux kernel, the following vulnerability has been resolved: i2c: tegra: check msg length in SMBUS block read For SMBUS block read, do not continue to read if the message length passed from the device is '0' or greater than the maximum allowed bytes.
CVE-2025-38406 2 Debian, Linux 2 Debian Linux, Linux Kernel 2026-01-02 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: wifi: ath6kl: remove WARN on bad firmware input If the firmware gives bad input, that's nothing to do with the driver's stack at this point etc., so the WARN_ON() doesn't add any value. Additionally, this is one of the top syzbot reports now. Just print a message, and as an added bonus, print the sizes too.
CVE-2025-38386 2 Debian, Linux 2 Debian Linux, Linux Kernel 2026-01-02 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ACPICA: Refuse to evaluate a method if arguments are missing As reported in [1], a platform firmware update that increased the number of method parameters and forgot to update a least one of its callers, caused ACPICA to crash due to use-after-free. Since this a result of a clear AML issue that arguably cannot be fixed up by the interpreter (it cannot produce missing data out of thin air), address it by making ACPICA refuse to evaluate a method if the caller attempts to pass fewer arguments than expected to it.
CVE-2025-38384 2 Debian, Linux 2 Debian Linux, Linux Kernel 2026-01-02 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: mtd: spinand: fix memory leak of ECC engine conf Memory allocated for the ECC engine conf is not released during spinand cleanup. Below kmemleak trace is seen for this memory leak: unreferenced object 0xffffff80064f00e0 (size 8): comm "swapper/0", pid 1, jiffies 4294937458 hex dump (first 8 bytes): 00 00 00 00 00 00 00 00 ........ backtrace (crc 0): kmemleak_alloc+0x30/0x40 __kmalloc_cache_noprof+0x208/0x3c0 spinand_ondie_ecc_init_ctx+0x114/0x200 nand_ecc_init_ctx+0x70/0xa8 nanddev_ecc_engine_init+0xec/0x27c spinand_probe+0xa2c/0x1620 spi_mem_probe+0x130/0x21c spi_probe+0xf0/0x170 really_probe+0x17c/0x6e8 __driver_probe_device+0x17c/0x21c driver_probe_device+0x58/0x180 __device_attach_driver+0x15c/0x1f8 bus_for_each_drv+0xec/0x150 __device_attach+0x188/0x24c device_initial_probe+0x10/0x20 bus_probe_device+0x11c/0x160 Fix the leak by calling nanddev_ecc_engine_cleanup() inside spinand_cleanup().
CVE-2025-38359 1 Linux 1 Linux Kernel 2026-01-02 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: s390/mm: Fix in_atomic() handling in do_secure_storage_access() Kernel user spaces accesses to not exported pages in atomic context incorrectly try to resolve the page fault. With debug options enabled call traces like this can be seen: BUG: sleeping function called from invalid context at kernel/locking/rwsem.c:1523 in_atomic(): 1, irqs_disabled(): 0, non_block: 0, pid: 419074, name: qemu-system-s39 preempt_count: 1, expected: 0 RCU nest depth: 0, expected: 0 INFO: lockdep is turned off. Preemption disabled at: [<00000383ea47cfa2>] copy_page_from_iter_atomic+0xa2/0x8a0 CPU: 12 UID: 0 PID: 419074 Comm: qemu-system-s39 Tainted: G W 6.16.0-20250531.rc0.git0.69b3a602feac.63.fc42.s390x+debug #1 PREEMPT Tainted: [W]=WARN Hardware name: IBM 3931 A01 703 (LPAR) Call Trace: [<00000383e990d282>] dump_stack_lvl+0xa2/0xe8 [<00000383e99bf152>] __might_resched+0x292/0x2d0 [<00000383eaa7c374>] down_read+0x34/0x2d0 [<00000383e99432f8>] do_secure_storage_access+0x108/0x360 [<00000383eaa724b0>] __do_pgm_check+0x130/0x220 [<00000383eaa842e4>] pgm_check_handler+0x114/0x160 [<00000383ea47d028>] copy_page_from_iter_atomic+0x128/0x8a0 ([<00000383ea47d016>] copy_page_from_iter_atomic+0x116/0x8a0) [<00000383e9c45eae>] generic_perform_write+0x16e/0x310 [<00000383e9eb87f4>] ext4_buffered_write_iter+0x84/0x160 [<00000383e9da0de4>] vfs_write+0x1c4/0x460 [<00000383e9da123c>] ksys_write+0x7c/0x100 [<00000383eaa7284e>] __do_syscall+0x15e/0x280 [<00000383eaa8417e>] system_call+0x6e/0x90 INFO: lockdep is turned off. It is not allowed to take the mmap_lock while in atomic context. Therefore handle such a secure storage access fault as if the accessed page is not mapped: the uaccess function will return -EFAULT, and the caller has to deal with this. Usually this means that the access is retried in process context, which allows to resolve the page fault (or in this case export the page).
CVE-2025-38345 2 Debian, Linux 2 Debian Linux, Linux Kernel 2026-01-02 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ACPICA: fix acpi operand cache leak in dswstate.c ACPICA commit 987a3b5cf7175916e2a4b6ea5b8e70f830dfe732 I found an ACPI cache leak in ACPI early termination and boot continuing case. When early termination occurs due to malicious ACPI table, Linux kernel terminates ACPI function and continues to boot process. While kernel terminates ACPI function, kmem_cache_destroy() reports Acpi-Operand cache leak. Boot log of ACPI operand cache leak is as follows: >[ 0.585957] ACPI: Added _OSI(Module Device) >[ 0.587218] ACPI: Added _OSI(Processor Device) >[ 0.588530] ACPI: Added _OSI(3.0 _SCP Extensions) >[ 0.589790] ACPI: Added _OSI(Processor Aggregator Device) >[ 0.591534] ACPI Error: Illegal I/O port address/length above 64K: C806E00000004002/0x2 (20170303/hwvalid-155) >[ 0.594351] ACPI Exception: AE_LIMIT, Unable to initialize fixed events (20170303/evevent-88) >[ 0.597858] ACPI: Unable to start the ACPI Interpreter >[ 0.599162] ACPI Error: Could not remove SCI handler (20170303/evmisc-281) >[ 0.601836] kmem_cache_destroy Acpi-Operand: Slab cache still has objects >[ 0.603556] CPU: 0 PID: 1 Comm: swapper/0 Not tainted 4.12.0-rc5 #26 >[ 0.605159] Hardware name: innotek gmb_h virtual_box/virtual_box, BIOS virtual_box 12/01/2006 >[ 0.609177] Call Trace: >[ 0.610063] ? dump_stack+0x5c/0x81 >[ 0.611118] ? kmem_cache_destroy+0x1aa/0x1c0 >[ 0.612632] ? acpi_sleep_proc_init+0x27/0x27 >[ 0.613906] ? acpi_os_delete_cache+0xa/0x10 >[ 0.617986] ? acpi_ut_delete_caches+0x3f/0x7b >[ 0.619293] ? acpi_terminate+0xa/0x14 >[ 0.620394] ? acpi_init+0x2af/0x34f >[ 0.621616] ? __class_create+0x4c/0x80 >[ 0.623412] ? video_setup+0x7f/0x7f >[ 0.624585] ? acpi_sleep_proc_init+0x27/0x27 >[ 0.625861] ? do_one_initcall+0x4e/0x1a0 >[ 0.627513] ? kernel_init_freeable+0x19e/0x21f >[ 0.628972] ? rest_init+0x80/0x80 >[ 0.630043] ? kernel_init+0xa/0x100 >[ 0.631084] ? ret_from_fork+0x25/0x30 >[ 0.633343] vgaarb: loaded >[ 0.635036] EDAC MC: Ver: 3.0.0 >[ 0.638601] PCI: Probing PCI hardware >[ 0.639833] PCI host bridge to bus 0000:00 >[ 0.641031] pci_bus 0000:00: root bus resource [io 0x0000-0xffff] > ... Continue to boot and log is omitted ... I analyzed this memory leak in detail and found acpi_ds_obj_stack_pop_and_ delete() function miscalculated the top of the stack. acpi_ds_obj_stack_push() function uses walk_state->operand_index for start position of the top, but acpi_ds_obj_stack_pop_and_delete() function considers index 0 for it. Therefore, this causes acpi operand memory leak. This cache leak causes a security threat because an old kernel (<= 4.9) shows memory locations of kernel functions in stack dump. Some malicious users could use this information to neutralize kernel ASLR. I made a patch to fix ACPI operand cache leak.
CVE-2025-38344 2 Debian, Linux 2 Debian Linux, Linux Kernel 2026-01-02 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ACPICA: fix acpi parse and parseext cache leaks ACPICA commit 8829e70e1360c81e7a5a901b5d4f48330e021ea5 I'm Seunghun Han, and I work for National Security Research Institute of South Korea. I have been doing a research on ACPI and found an ACPI cache leak in ACPI early abort cases. Boot log of ACPI cache leak is as follows: [ 0.352414] ACPI: Added _OSI(Module Device) [ 0.353182] ACPI: Added _OSI(Processor Device) [ 0.353182] ACPI: Added _OSI(3.0 _SCP Extensions) [ 0.353182] ACPI: Added _OSI(Processor Aggregator Device) [ 0.356028] ACPI: Unable to start the ACPI Interpreter [ 0.356799] ACPI Error: Could not remove SCI handler (20170303/evmisc-281) [ 0.360215] kmem_cache_destroy Acpi-State: Slab cache still has objects [ 0.360648] CPU: 0 PID: 1 Comm: swapper/0 Tainted: G W 4.12.0-rc4-next-20170608+ #10 [ 0.361273] Hardware name: innotek gmb_h virtual_box/virtual_box, BIOS virtual_box 12/01/2006 [ 0.361873] Call Trace: [ 0.362243] ? dump_stack+0x5c/0x81 [ 0.362591] ? kmem_cache_destroy+0x1aa/0x1c0 [ 0.362944] ? acpi_sleep_proc_init+0x27/0x27 [ 0.363296] ? acpi_os_delete_cache+0xa/0x10 [ 0.363646] ? acpi_ut_delete_caches+0x6d/0x7b [ 0.364000] ? acpi_terminate+0xa/0x14 [ 0.364000] ? acpi_init+0x2af/0x34f [ 0.364000] ? __class_create+0x4c/0x80 [ 0.364000] ? video_setup+0x7f/0x7f [ 0.364000] ? acpi_sleep_proc_init+0x27/0x27 [ 0.364000] ? do_one_initcall+0x4e/0x1a0 [ 0.364000] ? kernel_init_freeable+0x189/0x20a [ 0.364000] ? rest_init+0xc0/0xc0 [ 0.364000] ? kernel_init+0xa/0x100 [ 0.364000] ? ret_from_fork+0x25/0x30 I analyzed this memory leak in detail. I found that “Acpi-State” cache and “Acpi-Parse” cache were merged because the size of cache objects was same slab cache size. I finally found “Acpi-Parse” cache and “Acpi-parse_ext” cache were leaked using SLAB_NEVER_MERGE flag in kmem_cache_create() function. Real ACPI cache leak point is as follows: [ 0.360101] ACPI: Added _OSI(Module Device) [ 0.360101] ACPI: Added _OSI(Processor Device) [ 0.360101] ACPI: Added _OSI(3.0 _SCP Extensions) [ 0.361043] ACPI: Added _OSI(Processor Aggregator Device) [ 0.364016] ACPI: Unable to start the ACPI Interpreter [ 0.365061] ACPI Error: Could not remove SCI handler (20170303/evmisc-281) [ 0.368174] kmem_cache_destroy Acpi-Parse: Slab cache still has objects [ 0.369332] CPU: 1 PID: 1 Comm: swapper/0 Tainted: G W 4.12.0-rc4-next-20170608+ #8 [ 0.371256] Hardware name: innotek gmb_h virtual_box/virtual_box, BIOS virtual_box 12/01/2006 [ 0.372000] Call Trace: [ 0.372000] ? dump_stack+0x5c/0x81 [ 0.372000] ? kmem_cache_destroy+0x1aa/0x1c0 [ 0.372000] ? acpi_sleep_proc_init+0x27/0x27 [ 0.372000] ? acpi_os_delete_cache+0xa/0x10 [ 0.372000] ? acpi_ut_delete_caches+0x56/0x7b [ 0.372000] ? acpi_terminate+0xa/0x14 [ 0.372000] ? acpi_init+0x2af/0x34f [ 0.372000] ? __class_create+0x4c/0x80 [ 0.372000] ? video_setup+0x7f/0x7f [ 0.372000] ? acpi_sleep_proc_init+0x27/0x27 [ 0.372000] ? do_one_initcall+0x4e/0x1a0 [ 0.372000] ? kernel_init_freeable+0x189/0x20a [ 0.372000] ? rest_init+0xc0/0xc0 [ 0.372000] ? kernel_init+0xa/0x100 [ 0.372000] ? ret_from_fork+0x25/0x30 [ 0.388039] kmem_cache_destroy Acpi-parse_ext: Slab cache still has objects [ 0.389063] CPU: 1 PID: 1 Comm: swapper/0 Tainted: G W 4.12.0-rc4-next-20170608+ #8 [ 0.390557] Hardware name: innotek gmb_h virtual_box/virtual_box, BIOS virtual_box 12/01/2006 [ 0.392000] Call Trace: [ 0.392000] ? dump_stack+0x5c/0x81 [ 0.392000] ? kmem_cache_destroy+0x1aa/0x1c0 [ 0.392000] ? acpi_sleep_proc_init+0x27/0x27 [ 0.392000] ? acpi_os_delete_cache+0xa/0x10 [ 0.392000] ? acpi_ut_delete_caches+0x6d/0x7b [ 0.392000] ? acpi_terminate+0xa/0x14 [ 0.392000] ? acpi_init+0x2af/0x3 ---truncated---
CVE-2025-38336 2 Debian, Linux 2 Debian Linux, Linux Kernel 2026-01-02 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ata: pata_via: Force PIO for ATAPI devices on VT6415/VT6330 The controller has a hardware bug that can hard hang the system when doing ATAPI DMAs without any trace of what happened. Depending on the device attached, it can also prevent the system from booting. In this case, the system hangs when reading the ATIP from optical media with cdrecord -vvv -atip on an _NEC DVD_RW ND-4571A 1-01 and an Optiarc DVD RW AD-7200A 1.06 attached to an ASRock 990FX Extreme 4, running at UDMA/33. The issue can be reproduced by running the same command with a cygwin build of cdrecord on WinXP, although it requires more attempts to cause it. The hang in that case is also resolved by forcing PIO. It doesn't appear that VIA has produced any drivers for that OS, thus no known workaround exists. HDDs attached to the controller do not suffer from any DMA issues.
CVE-2025-38332 2 Debian, Linux 2 Debian Linux, Linux Kernel 2026-01-02 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: scsi: lpfc: Use memcpy() for BIOS version The strlcat() with FORTIFY support is triggering a panic because it thinks the target buffer will overflow although the correct target buffer size is passed in. Anyway, instead of memset() with 0 followed by a strlcat(), just use memcpy() and ensure that the resulting buffer is NULL terminated. BIOSVersion is only used for the lpfc_printf_log() which expects a properly terminated string.
CVE-2025-38321 1 Linux 1 Linux Kernel 2026-01-02 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: smb: Log an error when close_all_cached_dirs fails Under low-memory conditions, close_all_cached_dirs() can't move the dentries to a separate list to dput() them once the locks are dropped. This will result in a "Dentry still in use" error, so add an error message that makes it clear this is what happened: [ 495.281119] CIFS: VFS: \\otters.example.com\share Out of memory while dropping dentries [ 495.281595] ------------[ cut here ]------------ [ 495.281887] BUG: Dentry ffff888115531138{i=78,n=/} still in use (2) [unmount of cifs cifs] [ 495.282391] WARNING: CPU: 1 PID: 2329 at fs/dcache.c:1536 umount_check+0xc8/0xf0 Also, bail out of looping through all tcons as soon as a single allocation fails, since we're already in trouble, and kmalloc() attempts for subseqeuent tcons are likely to fail just like the first one did.
CVE-2025-38269 1 Linux 1 Linux Kernel 2026-01-02 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: btrfs: exit after state insertion failure at btrfs_convert_extent_bit() If insert_state() state failed it returns an error pointer and we call extent_io_tree_panic() which will trigger a BUG() call. However if CONFIG_BUG is disabled, which is an uncommon and exotic scenario, then we fallthrough and call cache_state() which will dereference the error pointer, resulting in an invalid memory access. So jump to the 'out' label after calling extent_io_tree_panic(), it also makes the code more clear besides dealing with the exotic scenario where CONFIG_BUG is disabled.
CVE-2025-38232 1 Linux 1 Linux Kernel 2026-01-02 4.7 Medium
In the Linux kernel, the following vulnerability has been resolved: NFSD: fix race between nfsd registration and exports_proc As of now nfsd calls create_proc_exports_entry() at start of init_nfsd and cleanup by remove_proc_entry() at last of exit_nfsd. Which causes kernel OOPs if there is race between below 2 operations: (i) exportfs -r (ii) mount -t nfsd none /proc/fs/nfsd for 5.4 kernel ARM64: CPU 1: el1_irq+0xbc/0x180 arch_counter_get_cntvct+0x14/0x18 running_clock+0xc/0x18 preempt_count_add+0x88/0x110 prep_new_page+0xb0/0x220 get_page_from_freelist+0x2d8/0x1778 __alloc_pages_nodemask+0x15c/0xef0 __vmalloc_node_range+0x28c/0x478 __vmalloc_node_flags_caller+0x8c/0xb0 kvmalloc_node+0x88/0xe0 nfsd_init_net+0x6c/0x108 [nfsd] ops_init+0x44/0x170 register_pernet_operations+0x114/0x270 register_pernet_subsys+0x34/0x50 init_nfsd+0xa8/0x718 [nfsd] do_one_initcall+0x54/0x2e0 CPU 2 : Unable to handle kernel NULL pointer dereference at virtual address 0000000000000010 PC is at : exports_net_open+0x50/0x68 [nfsd] Call trace: exports_net_open+0x50/0x68 [nfsd] exports_proc_open+0x2c/0x38 [nfsd] proc_reg_open+0xb8/0x198 do_dentry_open+0x1c4/0x418 vfs_open+0x38/0x48 path_openat+0x28c/0xf18 do_filp_open+0x70/0xe8 do_sys_open+0x154/0x248 Sometimes it crashes at exports_net_open() and sometimes cache_seq_next_rcu(). and same is happening on latest 6.14 kernel as well: [ 0.000000] Linux version 6.14.0-rc5-next-20250304-dirty ... [ 285.455918] Unable to handle kernel paging request at virtual address 00001f4800001f48 ... [ 285.464902] pc : cache_seq_next_rcu+0x78/0xa4 ... [ 285.469695] Call trace: [ 285.470083] cache_seq_next_rcu+0x78/0xa4 (P) [ 285.470488] seq_read+0xe0/0x11c [ 285.470675] proc_reg_read+0x9c/0xf0 [ 285.470874] vfs_read+0xc4/0x2fc [ 285.471057] ksys_read+0x6c/0xf4 [ 285.471231] __arm64_sys_read+0x1c/0x28 [ 285.471428] invoke_syscall+0x44/0x100 [ 285.471633] el0_svc_common.constprop.0+0x40/0xe0 [ 285.471870] do_el0_svc_compat+0x1c/0x34 [ 285.472073] el0_svc_compat+0x2c/0x80 [ 285.472265] el0t_32_sync_handler+0x90/0x140 [ 285.472473] el0t_32_sync+0x19c/0x1a0 [ 285.472887] Code: f9400885 93407c23 937d7c27 11000421 (f86378a3) [ 285.473422] ---[ end trace 0000000000000000 ]--- It reproduced simply with below script: while [ 1 ] do /exportfs -r done & while [ 1 ] do insmod /nfsd.ko mount -t nfsd none /proc/fs/nfsd umount /proc/fs/nfsd rmmod nfsd done & So exporting interfaces to user space shall be done at last and cleanup at first place. With change there is no Kernel OOPs.
CVE-2025-38208 1 Linux 1 Linux Kernel 2026-01-02 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: smb: client: add NULL check in automount_fullpath page is checked for null in __build_path_from_dentry_optional_prefix when tcon->origin_fullpath is not set. However, the check is missing when it is set. Add a check to prevent a potential NULL pointer dereference.