| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
libceph: fix potential use-after-free in have_mon_and_osd_map()
The wait loop in __ceph_open_session() can race with the client
receiving a new monmap or osdmap shortly after the initial map is
received. Both ceph_monc_handle_map() and handle_one_map() install
a new map immediately after freeing the old one
kfree(monc->monmap);
monc->monmap = monmap;
ceph_osdmap_destroy(osdc->osdmap);
osdc->osdmap = newmap;
under client->monc.mutex and client->osdc.lock respectively, but
because neither is taken in have_mon_and_osd_map() it's possible for
client->monc.monmap->epoch and client->osdc.osdmap->epoch arms in
client->monc.monmap && client->monc.monmap->epoch &&
client->osdc.osdmap && client->osdc.osdmap->epoch;
condition to dereference an already freed map. This happens to be
reproducible with generic/395 and generic/397 with KASAN enabled:
BUG: KASAN: slab-use-after-free in have_mon_and_osd_map+0x56/0x70
Read of size 4 at addr ffff88811012d810 by task mount.ceph/13305
CPU: 2 UID: 0 PID: 13305 Comm: mount.ceph Not tainted 6.14.0-rc2-build2+ #1266
...
Call Trace:
<TASK>
have_mon_and_osd_map+0x56/0x70
ceph_open_session+0x182/0x290
ceph_get_tree+0x333/0x680
vfs_get_tree+0x49/0x180
do_new_mount+0x1a3/0x2d0
path_mount+0x6dd/0x730
do_mount+0x99/0xe0
__do_sys_mount+0x141/0x180
do_syscall_64+0x9f/0x100
entry_SYSCALL_64_after_hwframe+0x76/0x7e
</TASK>
Allocated by task 13305:
ceph_osdmap_alloc+0x16/0x130
ceph_osdc_init+0x27a/0x4c0
ceph_create_client+0x153/0x190
create_fs_client+0x50/0x2a0
ceph_get_tree+0xff/0x680
vfs_get_tree+0x49/0x180
do_new_mount+0x1a3/0x2d0
path_mount+0x6dd/0x730
do_mount+0x99/0xe0
__do_sys_mount+0x141/0x180
do_syscall_64+0x9f/0x100
entry_SYSCALL_64_after_hwframe+0x76/0x7e
Freed by task 9475:
kfree+0x212/0x290
handle_one_map+0x23c/0x3b0
ceph_osdc_handle_map+0x3c9/0x590
mon_dispatch+0x655/0x6f0
ceph_con_process_message+0xc3/0xe0
ceph_con_v1_try_read+0x614/0x760
ceph_con_workfn+0x2de/0x650
process_one_work+0x486/0x7c0
process_scheduled_works+0x73/0x90
worker_thread+0x1c8/0x2a0
kthread+0x2ec/0x300
ret_from_fork+0x24/0x40
ret_from_fork_asm+0x1a/0x30
Rewrite the wait loop to check the above condition directly with
client->monc.mutex and client->osdc.lock taken as appropriate. While
at it, improve the timeout handling (previously mount_timeout could be
exceeded in case wait_event_interruptible_timeout() slept more than
once) and access client->auth_err under client->monc.mutex to match
how it's set in finish_auth().
monmap_show() and osdmap_show() now take the respective lock before
accessing the map as well. |
| In the Linux kernel, the following vulnerability has been resolved:
libceph: prevent potential out-of-bounds writes in handle_auth_session_key()
The len field originates from untrusted network packets. Boundary
checks have been added to prevent potential out-of-bounds writes when
decrypting the connection secret or processing service tickets.
[ idryomov: changelog ] |
| In the Linux kernel, the following vulnerability has been resolved:
libceph: replace BUG_ON with bounds check for map->max_osd
OSD indexes come from untrusted network packets. Boundary checks are
added to validate these against map->max_osd.
[ idryomov: drop BUG_ON in ceph_get_primary_affinity(), minor cosmetic
edits ] |
| In the Linux kernel, the following vulnerability has been resolved:
ASoC: SDCA: bug fix while parsing mipi-sdca-control-cn-list
"struct sdca_control" declares "values" field as integer array.
But the memory allocated to it is of char array. This causes
crash for sdca_parse_function API. This patch addresses the
issue by allocating correct data size. |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: ufs: ufs-qcom: Fix UFS OCP issue during UFS power down (PC=3)
According to UFS specifications, the power-off sequence for a UFS device
includes:
- Sending an SSU command with Power_Condition=3 and await a response.
- Asserting RST_N low.
- Turning off REF_CLK.
- Turning off VCC.
- Turning off VCCQ/VCCQ2.
As part of ufs shutdown, after the SSU command completion, asserting
hardware reset (HWRST) triggers the device firmware to wake up and
execute its reset routine. This routine initializes hardware blocks and
takes a few milliseconds to complete. During this time, the ICCQ draws a
large current.
This large ICCQ current may cause issues for the regulator which is
supplying power to UFS, because the turn off request from UFS driver to
the regulator framework will be immediately followed by low power
mode(LPM) request by regulator framework. This is done by framework
because UFS which is the only client is requesting for disable. So if
the rail is still in the process of shutting down while ICCQ exceeds LPM
current thresholds, and LPM mode is activated in hardware during this
state, it may trigger an overcurrent protection (OCP) fault in the
regulator.
To prevent this, a 10ms delay is added after asserting HWRST. This
allows the reset operation to complete while power rails remain active
and in high-power mode.
Currently there is no way for Host to query whether the reset is
completed or not and hence this the delay is based on experiments with
Qualcomm UFS controllers across multiple UFS vendors. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amdgpu: fix gpu page fault after hibernation on PF passthrough
On PF passthrough environment, after hibernate and then resume, coralgemm
will cause gpu page fault.
Mode1 reset happens during hibernate, but partition mode is not restored
on resume, register mmCP_HYP_XCP_CTL and mmCP_PSP_XCP_CTL is not right
after resume. When CP access the MQD BO, wrong stride size is used,
this will cause out of bound access on the MQD BO, resulting page fault.
The fix is to ensure gfx_v9_4_3_switch_compute_partition() is called
when resume from a hibernation.
KFD resume is called separately during a reset recovery or resume from
suspend sequence. Hence it's not required to be called as part of
partition switch.
(cherry picked from commit 5d1b32cfe4a676fe552416cb5ae847b215463a1a) |
| In the Linux kernel, the following vulnerability has been resolved:
drm/radeon: delete radeon_fence_process in is_signaled, no deadlock
Delete the attempt to progress the queue when checking if fence is
signaled. This avoids deadlock.
dma-fence_ops::signaled can be called with the fence lock in unknown
state. For radeon, the fence lock is also the wait queue lock. This can
cause a self deadlock when signaled() tries to make forward progress on
the wait queue. But advancing the queue is unneeded because incorrectly
returning false from signaled() is perfectly acceptable.
(cherry picked from commit 527ba26e50ec2ca2be9c7c82f3ad42998a75d0db) |
| In the Linux kernel, the following vulnerability has been resolved:
net: ethernet: ti: netcp: Standardize knav_dma_open_channel to return NULL on error
Make knav_dma_open_channel consistently return NULL on error instead
of ERR_PTR. Currently the header include/linux/soc/ti/knav_dma.h
returns NULL when the driver is disabled, but the driver
implementation does not even return NULL or ERR_PTR on failure,
causing inconsistency in the users. This results in a crash in
netcp_free_navigator_resources as followed (trimmed):
Unhandled fault: alignment exception (0x221) at 0xfffffff2
[fffffff2] *pgd=80000800207003, *pmd=82ffda003, *pte=00000000
Internal error: : 221 [#1] SMP ARM
Modules linked in:
CPU: 0 UID: 0 PID: 1 Comm: swapper/0 Not tainted 6.17.0-rc7 #1 NONE
Hardware name: Keystone
PC is at knav_dma_close_channel+0x30/0x19c
LR is at netcp_free_navigator_resources+0x2c/0x28c
[... TRIM...]
Call trace:
knav_dma_close_channel from netcp_free_navigator_resources+0x2c/0x28c
netcp_free_navigator_resources from netcp_ndo_open+0x430/0x46c
netcp_ndo_open from __dev_open+0x114/0x29c
__dev_open from __dev_change_flags+0x190/0x208
__dev_change_flags from netif_change_flags+0x1c/0x58
netif_change_flags from dev_change_flags+0x38/0xa0
dev_change_flags from ip_auto_config+0x2c4/0x11f0
ip_auto_config from do_one_initcall+0x58/0x200
do_one_initcall from kernel_init_freeable+0x1cc/0x238
kernel_init_freeable from kernel_init+0x1c/0x12c
kernel_init from ret_from_fork+0x14/0x38
[... TRIM...]
Standardize the error handling by making the function return NULL on
all error conditions. The API is used in just the netcp_core.c so the
impact is limited.
Note, this change, in effect reverts commit 5b6cb43b4d62 ("net:
ethernet: ti: netcp_core: return error while dma channel open issue"),
but provides a less error prone implementation. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amdgpu: remove two invalid BUG_ON()s
Those can be triggered trivially by userspace. |
| In the Linux kernel, the following vulnerability has been resolved:
media: imon: make send_packet() more robust
syzbot is reporting that imon has three problems which result in
hung tasks due to forever holding device lock [1].
First problem is that when usb_rx_callback_intf0() once got -EPROTO error
after ictx->dev_present_intf0 became true, usb_rx_callback_intf0()
resubmits urb after printk(), and resubmitted urb causes
usb_rx_callback_intf0() to again get -EPROTO error. This results in
printk() flooding (RCU stalls).
Alan Stern commented [2] that
In theory it's okay to resubmit _if_ the driver has a robust
error-recovery scheme (such as giving up after some fixed limit on the
number of errors or after some fixed time has elapsed, perhaps with a
time delay to prevent a flood of errors). Most drivers don't bother to
do this; they simply give up right away. This makes them more
vulnerable to short-term noise interference during USB transfers, but in
reality such interference is quite rare. There's nothing really wrong
with giving up right away.
but imon has a poor error-recovery scheme which just retries forever;
this behavior should be fixed.
Since I'm not sure whether it is safe for imon users to give up upon any
error code, this patch takes care of only union of error codes chosen from
modules in drivers/media/rc/ directory which handle -EPROTO error (i.e.
ir_toy, mceusb and igorplugusb).
Second problem is that when usb_rx_callback_intf0() once got -EPROTO error
before ictx->dev_present_intf0 becomes true, usb_rx_callback_intf0() always
resubmits urb due to commit 8791d63af0cf ("[media] imon: don't wedge
hardware after early callbacks"). Move the ictx->dev_present_intf0 test
introduced by commit 6f6b90c9231a ("[media] imon: don't parse scancodes
until intf configured") to immediately before imon_incoming_packet(), or
the first problem explained above happens without printk() flooding (i.e.
hung task).
Third problem is that when usb_rx_callback_intf0() is not called for some
reason (e.g. flaky hardware; the reproducer for this problem sometimes
prevents usb_rx_callback_intf0() from being called),
wait_for_completion_interruptible() in send_packet() never returns (i.e.
hung task). As a workaround for such situation, change send_packet() to
wait for completion with timeout of 10 seconds. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/xe/guc: Add devm release action to safely tear down CT
When a buffer object (BO) is allocated with the XE_BO_FLAG_GGTT_INVALIDATE
flag, the driver initiates TLB invalidation requests via the CTB mechanism
while releasing the BO. However a premature release of the CTB BO can lead
to system crashes, as observed in:
Oops: Oops: 0000 [#1] SMP NOPTI
RIP: 0010:h2g_write+0x2f3/0x7c0 [xe]
Call Trace:
guc_ct_send_locked+0x8b/0x670 [xe]
xe_guc_ct_send_locked+0x19/0x60 [xe]
send_tlb_invalidation+0xb4/0x460 [xe]
xe_gt_tlb_invalidation_ggtt+0x15e/0x2e0 [xe]
ggtt_invalidate_gt_tlb.part.0+0x16/0x90 [xe]
ggtt_node_remove+0x110/0x140 [xe]
xe_ggtt_node_remove+0x40/0xa0 [xe]
xe_ggtt_remove_bo+0x87/0x250 [xe]
Introduce a devm-managed release action during xe_guc_ct_init() and
xe_guc_ct_init_post_hwconfig() to ensure proper CTB disablement before
resource deallocation, preventing the use-after-free scenario. |
| In the Linux kernel, the following vulnerability has been resolved:
udp_tunnel: use netdev_warn() instead of netdev_WARN()
netdev_WARN() uses WARN/WARN_ON to print a backtrace along with
file and line information. In this case, udp_tunnel_nic_register()
returning an error is just a failed operation, not a kernel bug.
udp_tunnel_nic_register() can fail due to a memory allocation
failure (kzalloc() or udp_tunnel_nic_alloc()).
This is a normal runtime error and not a kernel bug.
Replace netdev_WARN() with netdev_warn() accordingly. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amdgpu/atom: Check kcalloc() for WS buffer in amdgpu_atom_execute_table_locked()
kcalloc() may fail. When WS is non-zero and allocation fails, ectx.ws
remains NULL while ectx.ws_size is set, leading to a potential NULL
pointer dereference in atom_get_src_int() when accessing WS entries.
Return -ENOMEM on allocation failure to avoid the NULL dereference. |
| In the Linux kernel, the following vulnerability has been resolved:
tcp: use dst_dev_rcu() in tcp_fastopen_active_disable_ofo_check()
Use RCU to avoid a pair of atomic operations and a potential
UAF on dst_dev()->flags. |
| In the Linux kernel, the following vulnerability has been resolved:
nfs4_setup_readdir(): insufficient locking for ->d_parent->d_inode dereferencing
Theoretically it's an oopsable race, but I don't believe one can manage
to hit it on real hardware; might become doable on a KVM, but it still
won't be easy to attack.
Anyway, it's easy to deal with - since xdr_encode_hyper() is just a call of
put_unaligned_be64(), we can put that under ->d_lock and be done with that. |
| In the Linux kernel, the following vulnerability has been resolved:
ima: don't clear IMA_DIGSIG flag when setting or removing non-IMA xattr
Currently when both IMA and EVM are in fix mode, the IMA signature will
be reset to IMA hash if a program first stores IMA signature in
security.ima and then writes/removes some other security xattr for the
file.
For example, on Fedora, after booting the kernel with "ima_appraise=fix
evm=fix ima_policy=appraise_tcb" and installing rpm-plugin-ima,
installing/reinstalling a package will not make good reference IMA
signature generated. Instead IMA hash is generated,
# getfattr -m - -d -e hex /usr/bin/bash
# file: usr/bin/bash
security.ima=0x0404...
This happens because when setting security.selinux, the IMA_DIGSIG flag
that had been set early was cleared. As a result, IMA hash is generated
when the file is closed.
Similarly, IMA signature can be cleared on file close after removing
security xattr like security.evm or setting/removing ACL.
Prevent replacing the IMA file signature with a file hash, by preventing
the IMA_DIGSIG flag from being reset.
Here's a minimal C reproducer which sets security.selinux as the last
step which can also replaced by removing security.evm or setting ACL,
#include <stdio.h>
#include <sys/xattr.h>
#include <fcntl.h>
#include <unistd.h>
#include <string.h>
#include <stdlib.h>
int main() {
const char* file_path = "/usr/sbin/test_binary";
const char* hex_string = "030204d33204490066306402304";
int length = strlen(hex_string);
char* ima_attr_value;
int fd;
fd = open(file_path, O_WRONLY|O_CREAT|O_EXCL, 0644);
if (fd == -1) {
perror("Error opening file");
return 1;
}
ima_attr_value = (char*)malloc(length / 2 );
for (int i = 0, j = 0; i < length; i += 2, j++) {
sscanf(hex_string + i, "%2hhx", &ima_attr_value[j]);
}
if (fsetxattr(fd, "security.ima", ima_attr_value, length/2, 0) == -1) {
perror("Error setting extended attribute");
close(fd);
return 1;
}
const char* selinux_value= "system_u:object_r:bin_t:s0";
if (fsetxattr(fd, "security.selinux", selinux_value, strlen(selinux_value), 0) == -1) {
perror("Error setting extended attribute");
close(fd);
return 1;
}
close(fd);
return 0;
} |
| In the Linux kernel, the following vulnerability has been resolved:
blk-cgroup: fix possible deadlock while configuring policy
Following deadlock can be triggered easily by lockdep:
WARNING: possible circular locking dependency detected
6.17.0-rc3-00124-ga12c2658ced0 #1665 Not tainted
------------------------------------------------------
check/1334 is trying to acquire lock:
ff1100011d9d0678 (&q->sysfs_lock){+.+.}-{4:4}, at: blk_unregister_queue+0x53/0x180
but task is already holding lock:
ff1100011d9d00e0 (&q->q_usage_counter(queue)#3){++++}-{0:0}, at: del_gendisk+0xba/0x110
which lock already depends on the new lock.
the existing dependency chain (in reverse order) is:
-> #2 (&q->q_usage_counter(queue)#3){++++}-{0:0}:
blk_queue_enter+0x40b/0x470
blkg_conf_prep+0x7b/0x3c0
tg_set_limit+0x10a/0x3e0
cgroup_file_write+0xc6/0x420
kernfs_fop_write_iter+0x189/0x280
vfs_write+0x256/0x490
ksys_write+0x83/0x190
__x64_sys_write+0x21/0x30
x64_sys_call+0x4608/0x4630
do_syscall_64+0xdb/0x6b0
entry_SYSCALL_64_after_hwframe+0x76/0x7e
-> #1 (&q->rq_qos_mutex){+.+.}-{4:4}:
__mutex_lock+0xd8/0xf50
mutex_lock_nested+0x2b/0x40
wbt_init+0x17e/0x280
wbt_enable_default+0xe9/0x140
blk_register_queue+0x1da/0x2e0
__add_disk+0x38c/0x5d0
add_disk_fwnode+0x89/0x250
device_add_disk+0x18/0x30
virtblk_probe+0x13a3/0x1800
virtio_dev_probe+0x389/0x610
really_probe+0x136/0x620
__driver_probe_device+0xb3/0x230
driver_probe_device+0x2f/0xe0
__driver_attach+0x158/0x250
bus_for_each_dev+0xa9/0x130
driver_attach+0x26/0x40
bus_add_driver+0x178/0x3d0
driver_register+0x7d/0x1c0
__register_virtio_driver+0x2c/0x60
virtio_blk_init+0x6f/0xe0
do_one_initcall+0x94/0x540
kernel_init_freeable+0x56a/0x7b0
kernel_init+0x2b/0x270
ret_from_fork+0x268/0x4c0
ret_from_fork_asm+0x1a/0x30
-> #0 (&q->sysfs_lock){+.+.}-{4:4}:
__lock_acquire+0x1835/0x2940
lock_acquire+0xf9/0x450
__mutex_lock+0xd8/0xf50
mutex_lock_nested+0x2b/0x40
blk_unregister_queue+0x53/0x180
__del_gendisk+0x226/0x690
del_gendisk+0xba/0x110
sd_remove+0x49/0xb0 [sd_mod]
device_remove+0x87/0xb0
device_release_driver_internal+0x11e/0x230
device_release_driver+0x1a/0x30
bus_remove_device+0x14d/0x220
device_del+0x1e1/0x5a0
__scsi_remove_device+0x1ff/0x2f0
scsi_remove_device+0x37/0x60
sdev_store_delete+0x77/0x100
dev_attr_store+0x1f/0x40
sysfs_kf_write+0x65/0x90
kernfs_fop_write_iter+0x189/0x280
vfs_write+0x256/0x490
ksys_write+0x83/0x190
__x64_sys_write+0x21/0x30
x64_sys_call+0x4608/0x4630
do_syscall_64+0xdb/0x6b0
entry_SYSCALL_64_after_hwframe+0x76/0x7e
other info that might help us debug this:
Chain exists of:
&q->sysfs_lock --> &q->rq_qos_mutex --> &q->q_usage_counter(queue)#3
Possible unsafe locking scenario:
CPU0 CPU1
---- ----
lock(&q->q_usage_counter(queue)#3);
lock(&q->rq_qos_mutex);
lock(&q->q_usage_counter(queue)#3);
lock(&q->sysfs_lock);
Root cause is that queue_usage_counter is grabbed with rq_qos_mutex
held in blkg_conf_prep(), while queue should be freezed before
rq_qos_mutex from other context.
The blk_queue_enter() from blkg_conf_prep() is used to protect against
policy deactivation, which is already protected with blkcg_mutex, hence
convert blk_queue_enter() to blkcg_mutex to fix this problem. Meanwhile,
consider that blkcg_mutex is held after queue is freezed from policy
deactivation, also convert blkg_alloc() to use GFP_NOIO. |
| In the Linux kernel, the following vulnerability has been resolved:
cpufreq/longhaul: handle NULL policy in longhaul_exit
longhaul_exit() was calling cpufreq_cpu_get(0) without checking
for a NULL policy pointer. On some systems, this could lead to a
NULL dereference and a kernel warning or panic.
This patch adds a check using unlikely() and returns early if the
policy is NULL.
Bugzilla: #219962 |
| In the Linux kernel, the following vulnerability has been resolved:
PCI: cadence: Check for the existence of cdns_pcie::ops before using it
cdns_pcie::ops might not be populated by all the Cadence glue drivers. This
is going to be true for the upcoming Sophgo platform which doesn't set the
ops.
Hence, add a check to prevent NULL pointer dereference.
[mani: reworded subject and description] |
| In the Linux kernel, the following vulnerability has been resolved:
media: nxp: imx8-isi: Fix streaming cleanup on release
The current implementation unconditionally calls
mxc_isi_video_cleanup_streaming() in mxc_isi_video_release(). This can
lead to situations where any release call (like from a simple
"v4l2-ctl -l") may release a currently streaming queue when called on
such a device.
This is reproducible on an i.MX8MP board by streaming from an ISI
capture device using gstreamer:
gst-launch-1.0 -v v4l2src device=/dev/videoX ! \
video/x-raw,format=GRAY8,width=1280,height=800,framerate=1/120 ! \
fakesink
While this stream is running, querying the caps of the same device
provokes the error state:
v4l2-ctl -l -d /dev/videoX
This results in the following trace:
[ 155.452152] ------------[ cut here ]------------
[ 155.452163] WARNING: CPU: 0 PID: 1708 at drivers/media/platform/nxp/imx8-isi/imx8-isi-pipe.c:713 mxc_isi_pipe_irq_handler+0x19c/0x1b0 [imx8_isi]
[ 157.004248] Modules linked in: cfg80211 rpmsg_ctrl rpmsg_char rpmsg_tty virtio_rpmsg_bus rpmsg_ns rpmsg_core rfkill nft_ct nf_conntrack nf_defrag_ipv6 nf_defrag_ipv4 nf_tables mcp251x6
[ 157.053499] CPU: 0 UID: 0 PID: 1708 Comm: python3 Not tainted 6.15.4-00114-g1f61ca5cad76 #1 PREEMPT
[ 157.064369] Hardware name: imx8mp_board_01 (DT)
[ 157.068205] pstate: 400000c5 (nZcv daIF -PAN -UAO -TCO -DIT -SSBS BTYPE=--)
[ 157.075169] pc : mxc_isi_pipe_irq_handler+0x19c/0x1b0 [imx8_isi]
[ 157.081195] lr : mxc_isi_pipe_irq_handler+0x38/0x1b0 [imx8_isi]
[ 157.087126] sp : ffff800080003ee0
[ 157.090438] x29: ffff800080003ee0 x28: ffff0000c3688000 x27: 0000000000000000
[ 157.097580] x26: 0000000000000000 x25: ffff0000c1e7ac00 x24: ffff800081b5ad50
[ 157.104723] x23: 00000000000000d1 x22: 0000000000000000 x21: ffff0000c25e4000
[ 157.111866] x20: 0000000060000200 x19: ffff80007a0608d0 x18: 0000000000000000
[ 157.119008] x17: ffff80006a4e3000 x16: ffff800080000000 x15: 0000000000000000
[ 157.126146] x14: 0000000000000000 x13: 0000000000000000 x12: 0000000000000000
[ 157.133287] x11: 0000000000000040 x10: ffff0000c01445f0 x9 : ffff80007a053a38
[ 157.140425] x8 : ffff0000c04004b8 x7 : 0000000000000000 x6 : 0000000000000000
[ 157.147567] x5 : ffff0000c0400490 x4 : ffff80006a4e3000 x3 : ffff0000c25e4000
[ 157.154706] x2 : 0000000000000000 x1 : ffff8000825c0014 x0 : 0000000060000200
[ 157.161850] Call trace:
[ 157.164296] mxc_isi_pipe_irq_handler+0x19c/0x1b0 [imx8_isi] (P)
[ 157.170319] __handle_irq_event_percpu+0x58/0x218
[ 157.175029] handle_irq_event+0x54/0xb8
[ 157.178867] handle_fasteoi_irq+0xac/0x248
[ 157.182968] handle_irq_desc+0x48/0x68
[ 157.186723] generic_handle_domain_irq+0x24/0x38
[ 157.191346] gic_handle_irq+0x54/0x120
[ 157.195098] call_on_irq_stack+0x24/0x30
[ 157.199027] do_interrupt_handler+0x88/0x98
[ 157.203212] el0_interrupt+0x44/0xc0
[ 157.206792] __el0_irq_handler_common+0x18/0x28
[ 157.211328] el0t_64_irq_handler+0x10/0x20
[ 157.215429] el0t_64_irq+0x198/0x1a0
[ 157.219009] ---[ end trace 0000000000000000 ]---
Address this issue by moving the streaming preparation and cleanup to
the vb2 .prepare_streaming() and .unprepare_streaming() operations. This
also simplifies the driver by allowing direct usage of the
vb2_ioctl_streamon() and vb2_ioctl_streamoff() helpers, and removal of
the manual cleanup from mxc_isi_video_release(). |