| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| A regression in the fix for bug 66512 in Apache Tomcat 11.0.0-M5, 10.1.8, 9.0.74 and 8.5.88 meant that, if a response did not include any HTTP headers no AJP SEND_HEADERS messare woudl be sent for the response which in turn meant that at least one AJP proxy (mod_proxy_ajp) would use the response headers from the previous request leading to an information leak. |
| MechanicalSoup is a Python library for automating interaction with websites. Starting in version 0.2.0 and prior to version 1.3.0, a malicious web server can read arbitrary files on the client using a `<input type="file" ...>` inside HTML form. All users of MechanicalSoup's form submission are affected, unless they took very specific (and manual) steps to reset HTML form field values. Version 1.3.0 contains a patch for this issue. |
| An improper input validation vulnerability exists in the OAS Engine User Creation functionality of Open Automation Software OAS Platform v18.00.0072. A specially crafted series of network requests can lead to unexpected data in the configuration. An attacker can send a sequence of requests to trigger this vulnerability. |
| An authentication issue was addressed with improved state management. This issue is fixed in macOS Big Sur 11.7.7, macOS Monterey 12.6.6, macOS Ventura 13.4. An unauthenticated user may be able to access recently printed documents. |
| aiven-extras is a PostgreSQL extension. Versions prior to 1.1.9 contain a privilege escalation vulnerability, allowing elevation to superuser inside PostgreSQL databases that use the aiven-extras package. The vulnerability leverages missing schema qualifiers on privileged functions called by the aiven-extras extension. A low privileged user can create objects that collide with existing function names, which will then be executed instead. Exploiting this vulnerability could allow a low privileged user to acquire `superuser` privileges, which would allow full, unrestricted access to all data and database functions. And could lead to arbitrary code execution or data access on the underlying host as the `postgres` user. The issue has been patched as of version 1.1.9. |
| An information disclosure vulnerability exists in the OAS Engine configuration management functionality of Open Automation Software OAS Platform v18.00.0072. A specially crafted series of network requests can lead to a disclosure of sensitive information. An attacker can send a sequence of requests to trigger this vulnerability. |
| An issue was discovered in Serenity Serene (and StartSharp) before 6.7.0. When a password reset request occurs, the server response leaks the existence of users. If one tries to reset a password of a non-existent user, an error message indicates that this user does not exist. |
| Security vulnerability in Apache bRPC <1.5.0 on all platforms allows attackers to execute arbitrary code via ServerOptions::pid_file.
An attacker that can influence the ServerOptions pid_file parameter with which the bRPC server is started can execute arbitrary code with the permissions of the bRPC process.
Solution:
1. upgrade to bRPC >= 1.5.0, download link: https://dist.apache.org/repos/dist/release/brpc/1.5.0/ https://dist.apache.org/repos/dist/release/brpc/1.5.0/
2. If you are using an old version of bRPC and hard to upgrade, you can apply this patch: https://github.com/apache/brpc/pull/2218 https://github.com/apache/brpc/pull/2218 |
| IBM Db2 for Linux, UNIX and Windows (includes Db2 Connect Server) 11.1 and 11.5 is vulnerable to denial of service with a specially crafted query. IBM X-Force ID: 254037. |
| IBM Db2 for Linux, UNIX and Windows (includes Db2 Connect Server) 10.5, 11.1, and 11.5 is vulnerable to denial of service with a specially crafted query on certain databases. IBM X-Force ID: 253440. |
| IBM Db2 for Linux, UNIX and Windows (includes Db2 Connect Server) 10.5, 11.1, and 11.5 is vulnerable to denial of service with a specially crafted query on certain tables. IBM X-Force ID: 253436. |
| IBM Db2 for Linux, UNIX and Windows (includes Db2 Connect Server) 10.5, 11.1, and 11.5 is vulnerable to denial of service with a specially crafted query on certain tables. IBM X-Force ID:
253361
. |
| IBM Db2 for Linux, UNIX and Windows (includes Db2 Connect Server) 11.1 and 11.5 federated server is vulnerable to a denial of service as the server may crash when using a specially crafted wrapper using certain options. IBM X-Force ID: 253202. |
| Laminas Diactoros provides PSR HTTP Message implementations. In versions 2.18.0 and prior, 2.19.0, 2.20.0, 2.21.0, 2.22.0, 2.23.0, 2.24.0, and 2.25.0, users who create HTTP requests or responses using laminas/laminas-diactoros, when providing a newline at the start or end of a header key or value, can cause an invalid message. This can lead to denial of service vectors or application errors. The problem has been patched in following versions 2.18.1, 2.19.1, 2.20.1, 2.21.1, 2.22.1, 2.23.1, 2.24.1, and 2.25.1. As a workaround, validate HTTP header keys and/or values, and if using user-supplied values, filter them to strip off leading or trailing newline characters before calling `withHeader()`. |
| Specially crafted string can cause a buffer overrun in the JSON parser library leading to a crash of the Zabbix Server or a Zabbix Proxy. |
| IBM Db2 for Linux, UNIX and Windows (includes Db2 Connect Server) 11.1, and 11.5 is vulnerable to a denial of service through a specially crafted federated query on specific federation objects. IBM X-Force ID: 252048. |
| IBM DB2 for Linux, UNIX and Windows (includes Db2 Connect Server) 10.5, 11.1, and 11.5 is vulnerable to a denial of service as it may trap when compiling a variation of an anonymous block. IBM X-Force ID: 251991. |
| Redis is an open source, in-memory database that persists on disk. Authenticated users can use the `HINCRBYFLOAT` command to create an invalid hash field that will crash Redis on access in affected versions. This issue has been addressed in in versions 7.0.11, 6.2.12, and 6.0.19. Users are advised to upgrade. There are no known workarounds for this issue. |
| Moby is an open source container framework developed by Docker Inc. that is distributed as Docker, Mirantis Container Runtime, and various other downstream projects/products. The Moby daemon component (`dockerd`), which is developed as moby/moby is commonly referred to as *Docker*.
Swarm Mode, which is compiled in and delivered by default in `dockerd` and is thus present in most major Moby downstreams, is a simple, built-in container orchestrator that is implemented through a combination of SwarmKit and supporting network code.
The `overlay` network driver is a core feature of Swarm Mode, providing isolated virtual LANs that allow communication between containers and services across the cluster. This driver is an implementation/user of VXLAN, which encapsulates link-layer (Ethernet) frames in UDP datagrams that tag the frame with the VXLAN metadata, including a VXLAN Network ID (VNI) that identifies the originating overlay network. In addition, the overlay network driver supports an optional, off-by-default encrypted mode, which is especially useful when VXLAN packets traverses an untrusted network between nodes.
Encrypted overlay networks function by encapsulating the VXLAN datagrams through the use of the IPsec Encapsulating Security Payload protocol in Transport mode. By deploying IPSec encapsulation, encrypted overlay networks gain the additional properties of source authentication through cryptographic proof, data integrity through check-summing, and confidentiality through encryption.
When setting an endpoint up on an encrypted overlay network, Moby installs three iptables (Linux kernel firewall) rules that enforce both incoming and outgoing IPSec. These rules rely on the `u32` iptables extension provided by the `xt_u32` kernel module to directly filter on a VXLAN packet's VNI field, so that IPSec guarantees can be enforced on encrypted overlay networks without interfering with other overlay networks or other users of VXLAN.
An iptables rule designates outgoing VXLAN datagrams with a VNI that corresponds to an encrypted overlay network for IPsec encapsulation.
Encrypted overlay networks on affected platforms silently transmit unencrypted data. As a result, `overlay` networks may appear to be functional, passing traffic as expected, but without any of the expected confidentiality or data integrity guarantees.
It is possible for an attacker sitting in a trusted position on the network to read all of the application traffic that is moving across the overlay network, resulting in unexpected secrets or user data disclosure. Thus, because many database protocols, internal APIs, etc. are not protected by a second layer of encryption, a user may use Swarm encrypted overlay networks to provide confidentiality, which due to this vulnerability this is no longer guaranteed.
Patches are available in Moby releases 23.0.3, and 20.10.24. As Mirantis Container Runtime's 20.10 releases are numbered differently, users of that platform should update to 20.10.16.
Some workarounds are available. Close the VXLAN port (by default, UDP port 4789) to outgoing traffic at the Internet boundary in order to prevent unintentionally leaking unencrypted traffic over the Internet, and/or ensure that the `xt_u32` kernel module is available on all nodes of the Swarm cluster. |
| Moby is an open source container framework developed by Docker Inc. that is distributed as Docker, Mirantis Container Runtime, and various other downstream projects/products. The Moby daemon component (`dockerd`), which is developed as moby/moby, is commonly referred to as *Docker*.
Swarm Mode, which is compiled in and delivered by default in dockerd and is thus present in most major Moby downstreams, is a simple, built-in container orchestrator that is implemented through a combination of SwarmKit and supporting network code.
The overlay network driver is a core feature of Swarm Mode, providing isolated virtual LANs that allow communication between containers and services across the cluster. This driver is an implementation/user of VXLAN, which encapsulates link-layer (Ethernet) frames in UDP datagrams that tag the frame with a VXLAN Network ID (VNI) that identifies the originating overlay network. In addition, the overlay network driver supports an optional, off-by-default encrypted mode, which is especially useful when VXLAN packets traverses an untrusted network between nodes.
Encrypted overlay networks function by encapsulating the VXLAN datagrams through the use of the IPsec Encapsulating Security Payload protocol in Transport mode. By deploying IPSec encapsulation, encrypted overlay networks gain the additional properties of source authentication through cryptographic proof, data integrity through check-summing, and confidentiality through encryption.
When setting an endpoint up on an encrypted overlay network, Moby installs three iptables (Linux kernel firewall) rules that enforce both incoming and outgoing IPSec. These rules rely on the u32 iptables extension provided by the xt_u32 kernel module to directly filter on a VXLAN packet's VNI field, so that IPSec guarantees can be enforced on encrypted overlay networks without interfering with other overlay networks or other users of VXLAN.
Two iptables rules serve to filter incoming VXLAN datagrams with a VNI that corresponds to an encrypted network and discards unencrypted datagrams. The rules are appended to the end of the INPUT filter chain, following any rules that have been previously set by the system administrator. Administrator-set rules take precedence over the rules Moby sets to discard unencrypted VXLAN datagrams, which can potentially admit unencrypted datagrams that should have been discarded.
The injection of arbitrary Ethernet frames can enable a Denial of Service attack. A sophisticated attacker may be able to establish a UDP or TCP connection by way of the container’s outbound gateway that would otherwise be blocked by a stateful firewall, or carry out other escalations beyond simple injection by smuggling packets into the overlay network.
Patches are available in Moby releases 23.0.3 and 20.10.24. As Mirantis Container Runtime's 20.10 releases are numbered differently, users of that platform should update to 20.10.16.
Some workarounds are available. Close the VXLAN port (by default, UDP port 4789) to incoming traffic at the Internet boundary to prevent all VXLAN packet injection, and/or ensure that the `xt_u32` kernel module is available on all nodes of the Swarm cluster. |