| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| A vulnerability was found in Open Babel up to 3.1.1. The impacted element is the function CacaoFormat::SetHilderbrandt of the file /src/formats/cacaoformat.cpp. The manipulation results in null pointer dereference. The attack is only possible with local access. The exploit has been made public and could be used. |
| A vulnerability has been found in Open Babel up to 3.1.1. The affected element is the function ChemKinFormat::ReadReactionQualifierLines of the file /src/formats/chemkinformat.cpp. The manipulation leads to null pointer dereference. The attack can only be performed from a local environment. The exploit has been disclosed to the public and may be used. |
| A NULL pointer dereference in TOTOLINK N600R firmware v4.3.0cu.7866_B2022506 allows attackers to cause a Denial of Service. |
| In the Linux kernel, the following vulnerability has been resolved:
media: atomisp: ssh_css: Fix a null-pointer dereference in load_video_binaries
The allocation failure of mycs->yuv_scaler_binary in load_video_binaries()
is followed with a dereference of mycs->yuv_scaler_binary after the
following call chain:
sh_css_pipe_load_binaries()
|-> load_video_binaries(mycs->yuv_scaler_binary == NULL)
|
|-> sh_css_pipe_unload_binaries()
|-> unload_video_binaries()
In unload_video_binaries(), it calls to ia_css_binary_unload with argument
&pipe->pipe_settings.video.yuv_scaler_binary[i], which refers to the
same memory slot as mycs->yuv_scaler_binary. Thus, a null-pointer
dereference is triggered. |
| An issue was discovered in gpac version 2.3-DEV-rev588-g7edc40fee-master, allows remote attackers to execute arbitrary code, cause a denial of service (DoS), and obtain sensitive information via null pointer deference in gf_dash_setup_period component in media_tools/dash_client.c. |
| In the Linux kernel, the following vulnerability has been resolved:
gve: guard XDP xmit NDO on existence of xdp queues
In GVE, dedicated XDP queues only exist when an XDP program is installed
and the interface is up. As such, the NDO XDP XMIT callback should
return early if either of these conditions are false.
In the case of no loaded XDP program, priv->num_xdp_queues=0 which can
cause a divide-by-zero error, and in the case of interface down,
num_xdp_queues remains untouched to persist XDP queue count for the next
interface up, but the TX pointer itself would be NULL.
The XDP xmit callback also needs to synchronize with a device
transitioning from open to close. This synchronization will happen via
the GVE_PRIV_FLAGS_NAPI_ENABLED bit along with a synchronize_net() call,
which waits for any RCU critical sections at call-time to complete. |
| In the Linux kernel, the following vulnerability has been resolved:
hid: cp2112: Fix duplicate workqueue initialization
Previously the cp2112 driver called INIT_DELAYED_WORK within
cp2112_gpio_irq_startup, resulting in duplicate initilizations of the
workqueue on subsequent IRQ startups following an initial request. This
resulted in a warning in set_work_data in workqueue.c, as well as a rare
NULL dereference within process_one_work in workqueue.c.
Initialize the workqueue within _probe instead. |
| In the Linux kernel, the following vulnerability has been resolved:
clk: sunxi-ng: common: Don't call hw_to_ccu_common on hw without common
In order to set the rate range of a hw sunxi_ccu_probe calls
hw_to_ccu_common() assuming all entries in desc->ccu_clks are contained
in a ccu_common struct. This assumption is incorrect and, in
consequence, causes invalid pointer de-references.
Remove the faulty call. Instead, add one more loop that iterates over
the ccu_clks and sets the rate range, if required. |
| In the Linux kernel, the following vulnerability has been resolved:
s390/dasd: Fix invalid dereferencing of indirect CCW data pointer
Fix invalid dereferencing of indirect CCW data pointer in
dasd_eckd_dump_sense() that leads to a kernel panic in error cases.
When using indirect addressing for DASD CCWs (IDAW) the CCW CDA pointer
does not contain the data address itself but a pointer to the IDAL.
This needs to be translated from physical to virtual as well before
using it.
This dereferencing is also used for dasd_page_cache and also fixed
although it is very unlikely that this code path ever gets used. |
| In the Linux kernel, the following vulnerability has been resolved:
ibmvnic: don't release napi in __ibmvnic_open()
If __ibmvnic_open() encounters an error such as when setting link state,
it calls release_resources() which frees the napi structures needlessly.
Instead, have __ibmvnic_open() only clean up the work it did so far (i.e.
disable napi and irqs) and leave the rest to the callers.
If caller of __ibmvnic_open() is ibmvnic_open(), it should release the
resources immediately. If the caller is do_reset() or do_hard_reset(),
they will release the resources on the next reset.
This fixes following crash that occurred when running the drmgr command
several times to add/remove a vnic interface:
[102056] ibmvnic 30000003 env3: Disabling rx_scrq[6] irq
[102056] ibmvnic 30000003 env3: Disabling rx_scrq[7] irq
[102056] ibmvnic 30000003 env3: Replenished 8 pools
Kernel attempted to read user page (10) - exploit attempt? (uid: 0)
BUG: Kernel NULL pointer dereference on read at 0x00000010
Faulting instruction address: 0xc000000000a3c840
Oops: Kernel access of bad area, sig: 11 [#1]
LE PAGE_SIZE=64K MMU=Radix SMP NR_CPUS=2048 NUMA pSeries
...
CPU: 9 PID: 102056 Comm: kworker/9:2 Kdump: loaded Not tainted 5.16.0-rc5-autotest-g6441998e2e37 #1
Workqueue: events_long __ibmvnic_reset [ibmvnic]
NIP: c000000000a3c840 LR: c0080000029b5378 CTR: c000000000a3c820
REGS: c0000000548e37e0 TRAP: 0300 Not tainted (5.16.0-rc5-autotest-g6441998e2e37)
MSR: 8000000000009033 <SF,EE,ME,IR,DR,RI,LE> CR: 28248484 XER: 00000004
CFAR: c0080000029bdd24 DAR: 0000000000000010 DSISR: 40000000 IRQMASK: 0
GPR00: c0080000029b55d0 c0000000548e3a80 c0000000028f0200 0000000000000000
...
NIP [c000000000a3c840] napi_enable+0x20/0xc0
LR [c0080000029b5378] __ibmvnic_open+0xf0/0x430 [ibmvnic]
Call Trace:
[c0000000548e3a80] [0000000000000006] 0x6 (unreliable)
[c0000000548e3ab0] [c0080000029b55d0] __ibmvnic_open+0x348/0x430 [ibmvnic]
[c0000000548e3b40] [c0080000029bcc28] __ibmvnic_reset+0x500/0xdf0 [ibmvnic]
[c0000000548e3c60] [c000000000176228] process_one_work+0x288/0x570
[c0000000548e3d00] [c000000000176588] worker_thread+0x78/0x660
[c0000000548e3da0] [c0000000001822f0] kthread+0x1c0/0x1d0
[c0000000548e3e10] [c00000000000cf64] ret_from_kernel_thread+0x5c/0x64
Instruction dump:
7d2948f8 792307e0 4e800020 60000000 3c4c01eb 384239e0 f821ffd1 39430010
38a0fff6 e92d1100 f9210028 39200000 <e9030010> f9010020 60420000 e9210020
---[ end trace 5f8033b08fd27706 ]--- |
| In the Linux kernel, the following vulnerability has been resolved:
IB/hfi1: Fix leak of rcvhdrtail_dummy_kvaddr
This buffer is currently allocated in hfi1_init():
if (reinit)
ret = init_after_reset(dd);
else
ret = loadtime_init(dd);
if (ret)
goto done;
/* allocate dummy tail memory for all receive contexts */
dd->rcvhdrtail_dummy_kvaddr = dma_alloc_coherent(&dd->pcidev->dev,
sizeof(u64),
&dd->rcvhdrtail_dummy_dma,
GFP_KERNEL);
if (!dd->rcvhdrtail_dummy_kvaddr) {
dd_dev_err(dd, "cannot allocate dummy tail memory\n");
ret = -ENOMEM;
goto done;
}
The reinit triggered path will overwrite the old allocation and leak it.
Fix by moving the allocation to hfi1_alloc_devdata() and the deallocation
to hfi1_free_devdata(). |
| In the Linux kernel, the following vulnerability has been resolved:
seg6: fix the iif in the IPv6 socket control block
When an IPv4 packet is received, the ip_rcv_core(...) sets the receiving
interface index into the IPv4 socket control block (v5.16-rc4,
net/ipv4/ip_input.c line 510):
IPCB(skb)->iif = skb->skb_iif;
If that IPv4 packet is meant to be encapsulated in an outer IPv6+SRH
header, the seg6_do_srh_encap(...) performs the required encapsulation.
In this case, the seg6_do_srh_encap function clears the IPv6 socket control
block (v5.16-rc4 net/ipv6/seg6_iptunnel.c line 163):
memset(IP6CB(skb), 0, sizeof(*IP6CB(skb)));
The memset(...) was introduced in commit ef489749aae5 ("ipv6: sr: clear
IP6CB(skb) on SRH ip4ip6 encapsulation") a long time ago (2019-01-29).
Since the IPv6 socket control block and the IPv4 socket control block share
the same memory area (skb->cb), the receiving interface index info is lost
(IP6CB(skb)->iif is set to zero).
As a side effect, that condition triggers a NULL pointer dereference if
commit 0857d6f8c759 ("ipv6: When forwarding count rx stats on the orig
netdev") is applied.
To fix that issue, we set the IP6CB(skb)->iif with the index of the
receiving interface once again. |
| In the Linux kernel, the following vulnerability has been resolved:
nfsd: Fix nsfd startup race (again)
Commit bd5ae9288d64 ("nfsd: register pernet ops last, unregister first")
has re-opened rpc_pipefs_event() race against nfsd_net_id registration
(register_pernet_subsys()) which has been fixed by commit bb7ffbf29e76
("nfsd: fix nsfd startup race triggering BUG_ON").
Restore the order of register_pernet_subsys() vs register_cld_notifier().
Add WARN_ON() to prevent a future regression.
Crash info:
Unable to handle kernel NULL pointer dereference at virtual address 0000000000000012
CPU: 8 PID: 345 Comm: mount Not tainted 5.4.144-... #1
pc : rpc_pipefs_event+0x54/0x120 [nfsd]
lr : rpc_pipefs_event+0x48/0x120 [nfsd]
Call trace:
rpc_pipefs_event+0x54/0x120 [nfsd]
blocking_notifier_call_chain
rpc_fill_super
get_tree_keyed
rpc_fs_get_tree
vfs_get_tree
do_mount
ksys_mount
__arm64_sys_mount
el0_svc_handler
el0_svc |
| A vulnerability has been found in D-Link DIR-823X 240126/240802 and classified as critical. Affected by this vulnerability is the function FUN_00412244. The manipulation leads to null pointer dereference. The attack can be launched remotely. The exploit has been disclosed to the public and may be used. |
| A vulnerability was found in axboe fio up to 3.41. This affects the function str_buffer_pattern_cb of the file options.c. Performing manipulation results in null pointer dereference. The attack must be initiated from a local position. The exploit has been made public and could be used. |
| In the Linux kernel, the following vulnerability has been resolved:
x86/fpu: Ensure shadow stack is active before "getting" registers
The x86 shadow stack support has its own set of registers. Those registers
are XSAVE-managed, but they are "supervisor state components" which means
that userspace can not touch them with XSAVE/XRSTOR. It also means that
they are not accessible from the existing ptrace ABI for XSAVE state.
Thus, there is a new ptrace get/set interface for it.
The regset code that ptrace uses provides an ->active() handler in
addition to the get/set ones. For shadow stack this ->active() handler
verifies that shadow stack is enabled via the ARCH_SHSTK_SHSTK bit in the
thread struct. The ->active() handler is checked from some call sites of
the regset get/set handlers, but not the ptrace ones. This was not
understood when shadow stack support was put in place.
As a result, both the set/get handlers can be called with
XFEATURE_CET_USER in its init state, which would cause get_xsave_addr() to
return NULL and trigger a WARN_ON(). The ssp_set() handler luckily has an
ssp_active() check to avoid surprising the kernel with shadow stack
behavior when the kernel is not ready for it (ARCH_SHSTK_SHSTK==0). That
check just happened to avoid the warning.
But the ->get() side wasn't so lucky. It can be called with shadow stacks
disabled, triggering the warning in practice, as reported by Christina
Schimpe:
WARNING: CPU: 5 PID: 1773 at arch/x86/kernel/fpu/regset.c:198 ssp_get+0x89/0xa0
[...]
Call Trace:
<TASK>
? show_regs+0x6e/0x80
? ssp_get+0x89/0xa0
? __warn+0x91/0x150
? ssp_get+0x89/0xa0
? report_bug+0x19d/0x1b0
? handle_bug+0x46/0x80
? exc_invalid_op+0x1d/0x80
? asm_exc_invalid_op+0x1f/0x30
? __pfx_ssp_get+0x10/0x10
? ssp_get+0x89/0xa0
? ssp_get+0x52/0xa0
__regset_get+0xad/0xf0
copy_regset_to_user+0x52/0xc0
ptrace_regset+0x119/0x140
ptrace_request+0x13c/0x850
? wait_task_inactive+0x142/0x1d0
? do_syscall_64+0x6d/0x90
arch_ptrace+0x102/0x300
[...]
Ensure that shadow stacks are active in a thread before looking them up
in the XSAVE buffer. Since ARCH_SHSTK_SHSTK and user_ssp[SHSTK_EN] are
set at the same time, the active check ensures that there will be
something to find in the XSAVE buffer.
[ dhansen: changelog/subject tweaks ] |
| In the Linux kernel, the following vulnerability has been resolved:
HID: uclogic: Fix user-memory-access bug in uclogic_params_ugee_v2_init_event_hooks()
When CONFIG_HID_UCLOGIC=y and CONFIG_KUNIT_ALL_TESTS=y, launch kernel and
then the below user-memory-access bug occurs.
In hid_test_uclogic_params_cleanup_event_hooks(),it call
uclogic_params_ugee_v2_init_event_hooks() with the first arg=NULL, so
when it calls uclogic_params_ugee_v2_has_battery(), the hid_get_drvdata()
will access hdev->dev with hdev=NULL, which will cause below
user-memory-access.
So add a fake_device with quirks member and call hid_set_drvdata()
to assign hdev->dev->driver_data which avoids the null-ptr-def bug
for drvdata->quirks in uclogic_params_ugee_v2_has_battery(). After applying
this patch, the below user-memory-access bug never occurs.
general protection fault, probably for non-canonical address 0xdffffc0000000329: 0000 [#1] PREEMPT SMP KASAN
KASAN: probably user-memory-access in range [0x0000000000001948-0x000000000000194f]
CPU: 5 PID: 2189 Comm: kunit_try_catch Tainted: G B W N 6.6.0-rc2+ #30
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.15.0-1 04/01/2014
RIP: 0010:uclogic_params_ugee_v2_init_event_hooks+0x87/0x600
Code: f3 f3 65 48 8b 14 25 28 00 00 00 48 89 54 24 60 31 d2 48 89 fa c7 44 24 30 00 00 00 00 48 c7 44 24 28 02 f8 02 01 48 c1 ea 03 <80> 3c 02 00 0f 85 2c 04 00 00 48 8b 9d 48 19 00 00 48 b8 00 00 00
RSP: 0000:ffff88810679fc88 EFLAGS: 00010202
RAX: dffffc0000000000 RBX: 0000000000000004 RCX: 0000000000000000
RDX: 0000000000000329 RSI: ffff88810679fd88 RDI: 0000000000001948
RBP: 0000000000000000 R08: 0000000000000000 R09: ffffed1020f639f0
R10: ffff888107b1cf87 R11: 0000000000000400 R12: 1ffff11020cf3f92
R13: ffff88810679fd88 R14: ffff888100b97b08 R15: ffff8881030bb080
FS: 0000000000000000(0000) GS:ffff888119e80000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000000000 CR3: 0000000005286001 CR4: 0000000000770ee0
DR0: ffffffff8fdd6cf4 DR1: ffffffff8fdd6cf5 DR2: ffffffff8fdd6cf6
DR3: ffffffff8fdd6cf7 DR6: 00000000fffe0ff0 DR7: 0000000000000600
PKRU: 55555554
Call Trace:
<TASK>
? die_addr+0x3d/0xa0
? exc_general_protection+0x144/0x220
? asm_exc_general_protection+0x22/0x30
? uclogic_params_ugee_v2_init_event_hooks+0x87/0x600
? sched_clock_cpu+0x69/0x550
? uclogic_parse_ugee_v2_desc_gen_params+0x70/0x70
? load_balance+0x2950/0x2950
? rcu_trc_cmpxchg_need_qs+0x67/0xa0
hid_test_uclogic_params_cleanup_event_hooks+0x9e/0x1a0
? uclogic_params_ugee_v2_init_event_hooks+0x600/0x600
? __switch_to+0x5cf/0xe60
? migrate_enable+0x260/0x260
? __kthread_parkme+0x83/0x150
? kunit_try_run_case_cleanup+0xe0/0xe0
kunit_generic_run_threadfn_adapter+0x4a/0x90
? kunit_try_catch_throw+0x80/0x80
kthread+0x2b5/0x380
? kthread_complete_and_exit+0x20/0x20
ret_from_fork+0x2d/0x70
? kthread_complete_and_exit+0x20/0x20
ret_from_fork_asm+0x11/0x20
</TASK>
Modules linked in:
Dumping ftrace buffer:
(ftrace buffer empty)
---[ end trace 0000000000000000 ]---
RIP: 0010:uclogic_params_ugee_v2_init_event_hooks+0x87/0x600
Code: f3 f3 65 48 8b 14 25 28 00 00 00 48 89 54 24 60 31 d2 48 89 fa c7 44 24 30 00 00 00 00 48 c7 44 24 28 02 f8 02 01 48 c1 ea 03 <80> 3c 02 00 0f 85 2c 04 00 00 48 8b 9d 48 19 00 00 48 b8 00 00 00
RSP: 0000:ffff88810679fc88 EFLAGS: 00010202
RAX: dffffc0000000000 RBX: 0000000000000004 RCX: 0000000000000000
RDX: 0000000000000329 RSI: ffff88810679fd88 RDI: 0000000000001948
RBP: 0000000000000000 R08: 0000000000000000 R09: ffffed1020f639f0
R10: ffff888107b1cf87 R11: 0000000000000400 R12: 1ffff11020cf3f92
R13: ffff88810679fd88 R14: ffff888100b97b08 R15: ffff8881030bb080
FS: 0000000000000000(0000) GS:ffff888119e80000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000000000 CR3: 0000000005286001 CR4: 0000000000770ee0
DR0: ffffffff8fdd6cf4 DR1:
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
s390/dasd: protect device queue against concurrent access
In dasd_profile_start() the amount of requests on the device queue are
counted. The access to the device queue is unprotected against
concurrent access. With a lot of parallel I/O, especially with alias
devices enabled, the device queue can change while dasd_profile_start()
is accessing the queue. In the worst case this leads to a kernel panic
due to incorrect pointer accesses.
Fix this by taking the device lock before accessing the queue and
counting the requests. Additionally the check for a valid profile data
pointer can be done earlier to avoid unnecessary locking in a hot path. |
| In the Linux kernel, the following vulnerability has been resolved:
clk: qcom: ipq8074: fix PCI-E clock oops
Fix PCI-E clock related kernel oops that are caused by a missing clock
parent.
pcie0_rchng_clk_src has num_parents set to 2 but only one parent is
actually set via parent_hws, it should also have "XO" defined.
This will cause the kernel to panic on a NULL pointer in
clk_core_get_parent_by_index().
So, to fix this utilize clk_parent_data to provide gcc_xo_gpll0 parent
data.
Since there is already an existing static const char * const gcc_xo_gpll0[]
used to provide the same parents via parent_names convert those users to
clk_parent_data as well.
Without this earlycon is needed to even catch the OOPS as it will reset
the board before serial is initialized with the following:
[ 0.232279] Unable to handle kernel paging request at virtual address 0000a00000000000
[ 0.232322] Mem abort info:
[ 0.239094] ESR = 0x96000004
[ 0.241778] EC = 0x25: DABT (current EL), IL = 32 bits
[ 0.244908] SET = 0, FnV = 0
[ 0.250377] EA = 0, S1PTW = 0
[ 0.253236] FSC = 0x04: level 0 translation fault
[ 0.256277] Data abort info:
[ 0.261141] ISV = 0, ISS = 0x00000004
[ 0.264262] CM = 0, WnR = 0
[ 0.267820] [0000a00000000000] address between user and kernel address ranges
[ 0.270954] Internal error: Oops: 96000004 [#1] SMP
[ 0.278067] Modules linked in:
[ 0.282751] CPU: 1 PID: 1 Comm: swapper/0 Not tainted 5.15.10 #0
[ 0.285882] Hardware name: Xiaomi AX3600 (DT)
[ 0.292043] pstate: 20400005 (nzCv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--)
[ 0.296299] pc : clk_core_get_parent_by_index+0x68/0xec
[ 0.303067] lr : __clk_register+0x1d8/0x820
[ 0.308273] sp : ffffffc01111b7d0
[ 0.312438] x29: ffffffc01111b7d0 x28: 0000000000000000 x27: 0000000000000040
[ 0.315919] x26: 0000000000000002 x25: 0000000000000000 x24: ffffff8000308800
[ 0.323037] x23: ffffff8000308850 x22: ffffff8000308880 x21: ffffff8000308828
[ 0.330155] x20: 0000000000000028 x19: ffffff8000309700 x18: 0000000000000020
[ 0.337272] x17: 000000005cc86990 x16: 0000000000000004 x15: ffffff80001d9d0a
[ 0.344391] x14: 0000000000000000 x13: 0000000000000000 x12: 0000000000000006
[ 0.351508] x11: 0000000000000003 x10: 0101010101010101 x9 : 0000000000000000
[ 0.358626] x8 : 7f7f7f7f7f7f7f7f x7 : 6468626f5e626266 x6 : 17000a3a403c1b06
[ 0.365744] x5 : 061b3c403a0a0017 x4 : 0000000000000000 x3 : 0000000000000001
[ 0.372863] x2 : 0000a00000000000 x1 : 0000000000000001 x0 : ffffff8000309700
[ 0.379982] Call trace:
[ 0.387091] clk_core_get_parent_by_index+0x68/0xec
[ 0.389351] __clk_register+0x1d8/0x820
[ 0.394210] devm_clk_hw_register+0x5c/0xe0
[ 0.398030] devm_clk_register_regmap+0x44/0x8c
[ 0.402198] qcom_cc_really_probe+0x17c/0x1d0
[ 0.406711] qcom_cc_probe+0x34/0x44
[ 0.411224] gcc_ipq8074_probe+0x18/0x30
[ 0.414869] platform_probe+0x68/0xe0
[ 0.418776] really_probe.part.0+0x9c/0x30c
[ 0.422336] __driver_probe_device+0x98/0x144
[ 0.426329] driver_probe_device+0x44/0x11c
[ 0.430842] __device_attach_driver+0xb4/0x120
[ 0.434836] bus_for_each_drv+0x68/0xb0
[ 0.439349] __device_attach+0xb0/0x170
[ 0.443081] device_initial_probe+0x14/0x20
[ 0.446901] bus_probe_device+0x9c/0xa4
[ 0.451067] device_add+0x35c/0x834
[ 0.454886] of_device_add+0x54/0x64
[ 0.458360] of_platform_device_create_pdata+0xc0/0x100
[ 0.462181] of_platform_bus_create+0x114/0x370
[ 0.467128] of_platform_bus_create+0x15c/0x370
[ 0.471641] of_platform_populate+0x50/0xcc
[ 0.476155] of_platform_default_populate_init+0xa8/0xc8
[ 0.480324] do_one_initcall+0x50/0x1b0
[ 0.485877] kernel_init_freeable+0x234/0x29c
[ 0.489436] kernel_init+0x24/0x120
[ 0.493948] ret_from_fork+0x10/0x20
[ 0.497253] Code: d50323bf d65f03c0 f94002a2 b4000302 (f9400042)
[ 0.501079] ---[ end trace 4ca7e1129da2abce ]--- |
| In the Linux kernel, the following vulnerability has been resolved:
ASoC: soc-compress: prevent the potentially use of null pointer
There is one call trace that snd_soc_register_card()
->snd_soc_bind_card()->soc_init_pcm_runtime()
->snd_soc_dai_compress_new()->snd_soc_new_compress().
In the trace the 'codec_dai' transfers from card->dai_link,
and we can see from the snd_soc_add_pcm_runtime() in
snd_soc_bind_card() that, if value of card->dai_link->num_codecs
is 0, then 'codec_dai' could be null pointer caused
by index out of bound in 'asoc_rtd_to_codec(rtd, 0)'.
And snd_soc_register_card() is called by various platforms.
Therefore, it is better to add the check in the case of misusing.
And because 'cpu_dai' has already checked in soc_init_pcm_runtime(),
there is no need to check again.
Adding the check as follow, then if 'codec_dai' is null,
snd_soc_new_compress() will not pass through the check
'if (playback + capture != 1)', avoiding the leftover use of
'codec_dai'. |