| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In Eclipse JGit versions 7.2.0.202503040940-r and older, the ManifestParser class used by the repo command and the AmazonS3 class used to implement the experimental amazons3 git transport protocol allowing to store git pack files in an Amazon S3 bucket, are vulnerable to XML External Entity (XXE) attacks when parsing XML files. This vulnerability can lead to information disclosure, denial of service, and other security issues. |
| An error in the SignServer container startup logic was found in Keyfactor SignServer versions prior to 7.2. The Admin CLI command used to configure Certificate access to the initial startup of the container sets a property of "allowany" to allow any user with a valid and trusted client auth certificate to connect. Admins can then set more restricted access to specific certificates. A logic error caused this admin CLI command to be run on each restart of the container instead of only the first startup as intended resetting the configuration to "allowany". |
| n8n is an open source workflow automation platform. From version 1.0.0 to before 2.0.0, a sandbox bypass vulnerability exists in the Python Code Node that uses Pyodide. An authenticated user with permission to create or modify workflows can exploit this vulnerability to execute arbitrary commands on the host system running n8n, using the same privileges as the n8n process. This issue has been patched in version 2.0.0. Workarounds for this issue involve disabling the Code Node by setting the environment variable NODES_EXCLUDE: "[\"n8n-nodes-base.code\"]", disabling Python support in the Code node by setting the environment variable N8N_PYTHON_ENABLED=false, which was introduced in n8n version 1.104.0, and configuring n8n to use the task runner based Python sandbox via the N8N_RUNNERS_ENABLED and N8N_NATIVE_PYTHON_RUNNER environment variables. |
| DIRAC is an interware, meaning a software framework for distributed computing. Prior to version 8.0.41, during the proxy generation process (e.g., when using `dirac-proxy-init`), it is possible for unauthorized users on the same machine to gain read access to the proxy. This allows the user to then perform any action that is possible with the original proxy. This vulnerability only exists for a short period of time (sub-millsecond) during the generation process. Version 8.0.41 contains a patch for the issue. As a workaround, setting the `X509_USER_PROXY` environment variable to a path that is inside a directory that is only readable to the current user avoids the potential risk. After the file has been written, it can be safely copied to the standard location (`/tmp/x509up_uNNNN`). |
| The Ninja Forms – The Contact Form Builder That Grows With You plugin for WordPress is vulnerable to Insecure Direct Object Reference in versions up to, and including, 3.13.2. This is due to the plugin not properly verifying that a user is authorized before the `ninja-forms-views` REST endpoints return form metadata and submission content. This makes it possible for unauthenticated attackers to read arbitrary form definitions and submission records via a leaked bearer token granted they can load any page containing the Submissions Table block. NOTE: The developer released a patch for this issue in 3.13.1, but inadvertently introduced a REST API endpoint in which a valid bearer token could be minted for arbitrary form IDs, making this patch ineffective. |
| Authorization Bypass Through User-Controlled Key vulnerability in Jewel Theme Master Addons for Elementor allows Exploiting Incorrectly Configured Access Control Security Levels.This issue affects Master Addons for Elementor: from n/a through 2.0.9.9.4. |
| KeePassXC-Browser thru 1.9.9.2 autofills or prompts to fill stored credentials into documents rendered under a browser-enforced CSP directive and iframe attribute sandbox, allowing attacker-controlled script in the sandboxed document to access populated form fields and exfiltrate credentials. |
| Use of Hardware Page Aggregation (HPA) and Stage-1 and/or Stage-2 translation on Cortex-A77, Cortex-A78, Cortex-A78C, Cortex-A78AE, Cortex-A710, Cortex-X1, Cortex-X1C, Cortex-X2, Cortex-X3, Cortex-X4, Cortex-X925, Neoverse V1, Neoverse V2, Neoverse V3, Neoverse V3AE, Neoverse N2 may permit bypass of Stage-2 translation and/or GPT protection. |
| ZwiiCMS versions prior to 13.7.00 contain a denial-of-service vulnerability in multiple administrative endpoints due to improper authorization checks combined with flawed resource state management. When an authenticated low-privilege user requests an administrative page, the application returns "404 Not Found" as expected, but incorrectly acquires and associates a temporary lock on the targeted resource with the attacker session prior to authorization. This lock prevents other users, including administrators, from accessing the affected functionality until the attacker navigates away or the session is terminated. |
| Authorization Bypass Through User-Controlled Key vulnerability in Mikado-Themes FiveStar fivestar allows Exploiting Incorrectly Configured Access Control Security Levels.This issue affects FiveStar: from n/a through <= 1.7. |
| URL Redirection to Untrusted Site ('Open Redirect') vulnerability in Scott Paterson Accept Donations with PayPal easy-paypal-donation allows Phishing.This issue affects Accept Donations with PayPal: from n/a through <= 1.5.1. |
| In the Linux kernel, the following vulnerability has been resolved:
s390/entry: Mark IRQ entries to fix stack depot warnings
The stack depot filters out everything outside of the top interrupt
context as an uninteresting or irrelevant part of the stack traces. This
helps with stack trace de-duplication, avoiding an explosion of saved
stack traces that share the same IRQ context code path but originate
from different randomly interrupted points, eventually exhausting the
stack depot.
Filtering uses in_irqentry_text() to identify functions within the
.irqentry.text and .softirqentry.text sections, which then become the
last stack trace entries being saved.
While __do_softirq() is placed into the .softirqentry.text section by
common code, populating .irqentry.text is architecture-specific.
Currently, the .irqentry.text section on s390 is empty, which prevents
stack depot filtering and de-duplication and could result in warnings
like:
Stack depot reached limit capacity
WARNING: CPU: 0 PID: 286113 at lib/stackdepot.c:252 depot_alloc_stack+0x39a/0x3c8
with PREEMPT and KASAN enabled.
Fix this by moving the IO/EXT interrupt handlers from .kprobes.text into
the .irqentry.text section and updating the kprobes blacklist to include
the .irqentry.text section.
This is done only for asynchronous interrupts and explicitly not for
program checks, which are synchronous and where the context beyond the
program check is important to preserve. Despite machine checks being
somewhat in between, they are extremely rare, and preserving context
when possible is also of value.
SVCs and Restart Interrupts are not relevant, one being always at the
boundary to user space and the other being a one-time thing.
IRQ entries filtering is also optionally used in ftrace function graph,
where the same logic applies. |
| In the Linux kernel, the following vulnerability has been resolved:
btrfs: don't take dev_replace rwsem on task already holding it
Running fstests btrfs/011 with MKFS_OPTIONS="-O rst" to force the usage of
the RAID stripe-tree, we get the following splat from lockdep:
BTRFS info (device sdd): dev_replace from /dev/sdd (devid 1) to /dev/sdb started
============================================
WARNING: possible recursive locking detected
6.11.0-rc3-btrfs-for-next #599 Not tainted
--------------------------------------------
btrfs/2326 is trying to acquire lock:
ffff88810f215c98 (&fs_info->dev_replace.rwsem){++++}-{3:3}, at: btrfs_map_block+0x39f/0x2250
but task is already holding lock:
ffff88810f215c98 (&fs_info->dev_replace.rwsem){++++}-{3:3}, at: btrfs_map_block+0x39f/0x2250
other info that might help us debug this:
Possible unsafe locking scenario:
CPU0
----
lock(&fs_info->dev_replace.rwsem);
lock(&fs_info->dev_replace.rwsem);
*** DEADLOCK ***
May be due to missing lock nesting notation
1 lock held by btrfs/2326:
#0: ffff88810f215c98 (&fs_info->dev_replace.rwsem){++++}-{3:3}, at: btrfs_map_block+0x39f/0x2250
stack backtrace:
CPU: 1 UID: 0 PID: 2326 Comm: btrfs Not tainted 6.11.0-rc3-btrfs-for-next #599
Hardware name: Bochs Bochs, BIOS Bochs 01/01/2011
Call Trace:
<TASK>
dump_stack_lvl+0x5b/0x80
__lock_acquire+0x2798/0x69d0
? __pfx___lock_acquire+0x10/0x10
? __pfx___lock_acquire+0x10/0x10
lock_acquire+0x19d/0x4a0
? btrfs_map_block+0x39f/0x2250
? __pfx_lock_acquire+0x10/0x10
? find_held_lock+0x2d/0x110
? lock_is_held_type+0x8f/0x100
down_read+0x8e/0x440
? btrfs_map_block+0x39f/0x2250
? __pfx_down_read+0x10/0x10
? do_raw_read_unlock+0x44/0x70
? _raw_read_unlock+0x23/0x40
btrfs_map_block+0x39f/0x2250
? btrfs_dev_replace_by_ioctl+0xd69/0x1d00
? btrfs_bio_counter_inc_blocked+0xd9/0x2e0
? __kasan_slab_alloc+0x6e/0x70
? __pfx_btrfs_map_block+0x10/0x10
? __pfx_btrfs_bio_counter_inc_blocked+0x10/0x10
? kmem_cache_alloc_noprof+0x1f2/0x300
? mempool_alloc_noprof+0xed/0x2b0
btrfs_submit_chunk+0x28d/0x17e0
? __pfx_btrfs_submit_chunk+0x10/0x10
? bvec_alloc+0xd7/0x1b0
? bio_add_folio+0x171/0x270
? __pfx_bio_add_folio+0x10/0x10
? __kasan_check_read+0x20/0x20
btrfs_submit_bio+0x37/0x80
read_extent_buffer_pages+0x3df/0x6c0
btrfs_read_extent_buffer+0x13e/0x5f0
read_tree_block+0x81/0xe0
read_block_for_search+0x4bd/0x7a0
? __pfx_read_block_for_search+0x10/0x10
btrfs_search_slot+0x78d/0x2720
? __pfx_btrfs_search_slot+0x10/0x10
? lock_is_held_type+0x8f/0x100
? kasan_save_track+0x14/0x30
? __kasan_slab_alloc+0x6e/0x70
? kmem_cache_alloc_noprof+0x1f2/0x300
btrfs_get_raid_extent_offset+0x181/0x820
? __pfx_lock_acquire+0x10/0x10
? __pfx_btrfs_get_raid_extent_offset+0x10/0x10
? down_read+0x194/0x440
? __pfx_down_read+0x10/0x10
? do_raw_read_unlock+0x44/0x70
? _raw_read_unlock+0x23/0x40
btrfs_map_block+0x5b5/0x2250
? __pfx_btrfs_map_block+0x10/0x10
scrub_submit_initial_read+0x8fe/0x11b0
? __pfx_scrub_submit_initial_read+0x10/0x10
submit_initial_group_read+0x161/0x3a0
? lock_release+0x20e/0x710
? __pfx_submit_initial_group_read+0x10/0x10
? __pfx_lock_release+0x10/0x10
scrub_simple_mirror.isra.0+0x3eb/0x580
scrub_stripe+0xe4d/0x1440
? lock_release+0x20e/0x710
? __pfx_scrub_stripe+0x10/0x10
? __pfx_lock_release+0x10/0x10
? do_raw_read_unlock+0x44/0x70
? _raw_read_unlock+0x23/0x40
scrub_chunk+0x257/0x4a0
scrub_enumerate_chunks+0x64c/0xf70
? __mutex_unlock_slowpath+0x147/0x5f0
? __pfx_scrub_enumerate_chunks+0x10/0x10
? bit_wait_timeout+0xb0/0x170
? __up_read+0x189/0x700
? scrub_workers_get+0x231/0x300
? up_write+0x490/0x4f0
btrfs_scrub_dev+0x52e/0xcd0
? create_pending_snapshots+0x230/0x250
? __pfx_btrfs_scrub_dev+0x10/0x10
btrfs_dev_replace_by_ioctl+0xd69/0x1d00
? lock_acquire+0x19d/0x4a0
? __pfx_btrfs_dev_replace_by_ioctl+0x10/0x10
?
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
btrfs: fix BUG_ON condition in btrfs_cancel_balance
Pausing and canceling balance can race to interrupt balance lead to BUG_ON
panic in btrfs_cancel_balance. The BUG_ON condition in btrfs_cancel_balance
does not take this race scenario into account.
However, the race condition has no other side effects. We can fix that.
Reproducing it with panic trace like this:
kernel BUG at fs/btrfs/volumes.c:4618!
RIP: 0010:btrfs_cancel_balance+0x5cf/0x6a0
Call Trace:
<TASK>
? do_nanosleep+0x60/0x120
? hrtimer_nanosleep+0xb7/0x1a0
? sched_core_clone_cookie+0x70/0x70
btrfs_ioctl_balance_ctl+0x55/0x70
btrfs_ioctl+0xa46/0xd20
__x64_sys_ioctl+0x7d/0xa0
do_syscall_64+0x38/0x80
entry_SYSCALL_64_after_hwframe+0x63/0xcd
Race scenario as follows:
> mutex_unlock(&fs_info->balance_mutex);
> --------------------
> .......issue pause and cancel req in another thread
> --------------------
> ret = __btrfs_balance(fs_info);
>
> mutex_lock(&fs_info->balance_mutex);
> if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req)) {
> btrfs_info(fs_info, "balance: paused");
> btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED);
> } |
| In the Linux kernel, the following vulnerability has been resolved:
fs: relax assertions on failure to encode file handles
Encoding file handles is usually performed by a filesystem >encode_fh()
method that may fail for various reasons.
The legacy users of exportfs_encode_fh(), namely, nfsd and
name_to_handle_at(2) syscall are ready to cope with the possibility
of failure to encode a file handle.
There are a few other users of exportfs_encode_{fh,fid}() that
currently have a WARN_ON() assertion when ->encode_fh() fails.
Relax those assertions because they are wrong.
The second linked bug report states commit 16aac5ad1fa9 ("ovl: support
encoding non-decodable file handles") in v6.6 as the regressing commit,
but this is not accurate.
The aforementioned commit only increases the chances of the assertion
and allows triggering the assertion with the reproducer using overlayfs,
inotify and drop_caches.
Triggering this assertion was always possible with other filesystems and
other reasons of ->encode_fh() failures and more particularly, it was
also possible with the exact same reproducer using overlayfs that is
mounted with options index=on,nfs_export=on also on kernels < v6.6.
Therefore, I am not listing the aforementioned commit as a Fixes commit.
Backport hint: this patch will have a trivial conflict applying to
v6.6.y, and other trivial conflicts applying to stable kernels < v6.6. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: cfg80211: clear link ID from bitmap during link delete after clean up
Currently, during link deletion, the link ID is first removed from the
valid_links bitmap before performing any clean-up operations. However, some
functions require the link ID to remain in the valid_links bitmap. One
such example is cfg80211_cac_event(). The flow is -
nl80211_remove_link()
cfg80211_remove_link()
ieee80211_del_intf_link()
ieee80211_vif_set_links()
ieee80211_vif_update_links()
ieee80211_link_stop()
cfg80211_cac_event()
cfg80211_cac_event() requires link ID to be present but it is cleared
already in cfg80211_remove_link(). Ultimately, WARN_ON() is hit.
Therefore, clear the link ID from the bitmap only after completing the link
clean-up. |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: megaraid_sas: Fix for a potential deadlock
This fixes a 'possible circular locking dependency detected' warning
CPU0 CPU1
---- ----
lock(&instance->reset_mutex);
lock(&shost->scan_mutex);
lock(&instance->reset_mutex);
lock(&shost->scan_mutex);
Fix this by temporarily releasing the reset_mutex. |
| In the Linux kernel, the following vulnerability has been resolved:
x86/CPU/AMD: Clear virtualized VMLOAD/VMSAVE on Zen4 client
A number of Zen4 client SoCs advertise the ability to use virtualized
VMLOAD/VMSAVE, but using these instructions is reported to be a cause
of a random host reboot.
These instructions aren't intended to be advertised on Zen4 client
so clear the capability. |
| In the Linux kernel, the following vulnerability has been resolved:
afs: Fix lock recursion
afs_wake_up_async_call() can incur lock recursion. The problem is that it
is called from AF_RXRPC whilst holding the ->notify_lock, but it tries to
take a ref on the afs_call struct in order to pass it to a work queue - but
if the afs_call is already queued, we then have an extraneous ref that must
be put... calling afs_put_call() may call back down into AF_RXRPC through
rxrpc_kernel_shutdown_call(), however, which might try taking the
->notify_lock again.
This case isn't very common, however, so defer it to a workqueue. The oops
looks something like:
BUG: spinlock recursion on CPU#0, krxrpcio/7001/1646
lock: 0xffff888141399b30, .magic: dead4ead, .owner: krxrpcio/7001/1646, .owner_cpu: 0
CPU: 0 UID: 0 PID: 1646 Comm: krxrpcio/7001 Not tainted 6.12.0-rc2-build3+ #4351
Hardware name: ASUS All Series/H97-PLUS, BIOS 2306 10/09/2014
Call Trace:
<TASK>
dump_stack_lvl+0x47/0x70
do_raw_spin_lock+0x3c/0x90
rxrpc_kernel_shutdown_call+0x83/0xb0
afs_put_call+0xd7/0x180
rxrpc_notify_socket+0xa0/0x190
rxrpc_input_split_jumbo+0x198/0x1d0
rxrpc_input_data+0x14b/0x1e0
? rxrpc_input_call_packet+0xc2/0x1f0
rxrpc_input_call_event+0xad/0x6b0
rxrpc_input_packet_on_conn+0x1e1/0x210
rxrpc_input_packet+0x3f2/0x4d0
rxrpc_io_thread+0x243/0x410
? __pfx_rxrpc_io_thread+0x10/0x10
kthread+0xcf/0xe0
? __pfx_kthread+0x10/0x10
ret_from_fork+0x24/0x40
? __pfx_kthread+0x10/0x10
ret_from_fork_asm+0x1a/0x30
</TASK> |
| In the Linux kernel, the following vulnerability has been resolved:
RDMA/mad: Improve handling of timed out WRs of mad agent
Current timeout handler of mad agent acquires/releases mad_agent_priv
lock for every timed out WRs. This causes heavy locking contention
when higher no. of WRs are to be handled inside timeout handler.
This leads to softlockup with below trace in some use cases where
rdma-cm path is used to establish connection between peer nodes
Trace:
-----
BUG: soft lockup - CPU#4 stuck for 26s! [kworker/u128:3:19767]
CPU: 4 PID: 19767 Comm: kworker/u128:3 Kdump: loaded Tainted: G OE
------- --- 5.14.0-427.13.1.el9_4.x86_64 #1
Hardware name: Dell Inc. PowerEdge R740/01YM03, BIOS 2.4.8 11/26/2019
Workqueue: ib_mad1 timeout_sends [ib_core]
RIP: 0010:__do_softirq+0x78/0x2ac
RSP: 0018:ffffb253449e4f98 EFLAGS: 00000246
RAX: 00000000ffffffff RBX: 0000000000000000 RCX: 000000000000001f
RDX: 000000000000001d RSI: 000000003d1879ab RDI: fff363b66fd3a86b
RBP: ffffb253604cbcd8 R08: 0000009065635f3b R09: 0000000000000000
R10: 0000000000000040 R11: ffffb253449e4ff8 R12: 0000000000000000
R13: 0000000000000000 R14: 0000000000000000 R15: 0000000000000040
FS: 0000000000000000(0000) GS:ffff8caa1fc80000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007fd9ec9db900 CR3: 0000000891934006 CR4: 00000000007706e0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
PKRU: 55555554
Call Trace:
<IRQ>
? show_trace_log_lvl+0x1c4/0x2df
? show_trace_log_lvl+0x1c4/0x2df
? __irq_exit_rcu+0xa1/0xc0
? watchdog_timer_fn+0x1b2/0x210
? __pfx_watchdog_timer_fn+0x10/0x10
? __hrtimer_run_queues+0x127/0x2c0
? hrtimer_interrupt+0xfc/0x210
? __sysvec_apic_timer_interrupt+0x5c/0x110
? sysvec_apic_timer_interrupt+0x37/0x90
? asm_sysvec_apic_timer_interrupt+0x16/0x20
? __do_softirq+0x78/0x2ac
? __do_softirq+0x60/0x2ac
__irq_exit_rcu+0xa1/0xc0
sysvec_call_function_single+0x72/0x90
</IRQ>
<TASK>
asm_sysvec_call_function_single+0x16/0x20
RIP: 0010:_raw_spin_unlock_irq+0x14/0x30
RSP: 0018:ffffb253604cbd88 EFLAGS: 00000247
RAX: 000000000001960d RBX: 0000000000000002 RCX: ffff8cad2a064800
RDX: 000000008020001b RSI: 0000000000000001 RDI: ffff8cad5d39f66c
RBP: ffff8cad5d39f600 R08: 0000000000000001 R09: 0000000000000000
R10: ffff8caa443e0c00 R11: ffffb253604cbcd8 R12: ffff8cacb8682538
R13: 0000000000000005 R14: ffffb253604cbd90 R15: ffff8cad5d39f66c
cm_process_send_error+0x122/0x1d0 [ib_cm]
timeout_sends+0x1dd/0x270 [ib_core]
process_one_work+0x1e2/0x3b0
? __pfx_worker_thread+0x10/0x10
worker_thread+0x50/0x3a0
? __pfx_worker_thread+0x10/0x10
kthread+0xdd/0x100
? __pfx_kthread+0x10/0x10
ret_from_fork+0x29/0x50
</TASK>
Simplified timeout handler by creating local list of timed out WRs
and invoke send handler post creating the list. The new method acquires/
releases lock once to fetch the list and hence helps to reduce locking
contetiong when processing higher no. of WRs |