| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
xfs: don't walk off the end of a directory data block
This adds sanity checks for xfs_dir2_data_unused and xfs_dir2_data_entry
to make sure don't stray beyond valid memory region. Before patching, the
loop simply checks that the start offset of the dup and dep is within the
range. So in a crafted image, if last entry is xfs_dir2_data_unused, we
can change dup->length to dup->length-1 and leave 1 byte of space. In the
next traversal, this space will be considered as dup or dep. We may
encounter an out of bound read when accessing the fixed members.
In the patch, we make sure that the remaining bytes large enough to hold
an unused entry before accessing xfs_dir2_data_unused and
xfs_dir2_data_unused is XFS_DIR2_DATA_ALIGN byte aligned. We also make
sure that the remaining bytes large enough to hold a dirent with a
single-byte name before accessing xfs_dir2_data_entry. |
| In the Linux kernel, the following vulnerability has been resolved:
netpoll: Fix race condition in netpoll_owner_active
KCSAN detected a race condition in netpoll:
BUG: KCSAN: data-race in net_rx_action / netpoll_send_skb
write (marked) to 0xffff8881164168b0 of 4 bytes by interrupt on cpu 10:
net_rx_action (./include/linux/netpoll.h:90 net/core/dev.c:6712 net/core/dev.c:6822)
<snip>
read to 0xffff8881164168b0 of 4 bytes by task 1 on cpu 2:
netpoll_send_skb (net/core/netpoll.c:319 net/core/netpoll.c:345 net/core/netpoll.c:393)
netpoll_send_udp (net/core/netpoll.c:?)
<snip>
value changed: 0x0000000a -> 0xffffffff
This happens because netpoll_owner_active() needs to check if the
current CPU is the owner of the lock, touching napi->poll_owner
non atomically. The ->poll_owner field contains the current CPU holding
the lock.
Use an atomic read to check if the poll owner is the current CPU. |
| In the Linux kernel, the following vulnerability has been resolved:
ext4: fix uninitialized ratelimit_state->lock access in __ext4_fill_super()
In the following concurrency we will access the uninitialized rs->lock:
ext4_fill_super
ext4_register_sysfs
// sysfs registered msg_ratelimit_interval_ms
// Other processes modify rs->interval to
// non-zero via msg_ratelimit_interval_ms
ext4_orphan_cleanup
ext4_msg(sb, KERN_INFO, "Errors on filesystem, "
__ext4_msg
___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state)
if (!rs->interval) // do nothing if interval is 0
return 1;
raw_spin_trylock_irqsave(&rs->lock, flags)
raw_spin_trylock(lock)
_raw_spin_trylock
__raw_spin_trylock
spin_acquire(&lock->dep_map, 0, 1, _RET_IP_)
lock_acquire
__lock_acquire
register_lock_class
assign_lock_key
dump_stack();
ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10);
raw_spin_lock_init(&rs->lock);
// init rs->lock here
and get the following dump_stack:
=========================================================
INFO: trying to register non-static key.
The code is fine but needs lockdep annotation, or maybe
you didn't initialize this object before use?
turning off the locking correctness validator.
CPU: 12 PID: 753 Comm: mount Tainted: G E 6.7.0-rc6-next-20231222 #504
[...]
Call Trace:
dump_stack_lvl+0xc5/0x170
dump_stack+0x18/0x30
register_lock_class+0x740/0x7c0
__lock_acquire+0x69/0x13a0
lock_acquire+0x120/0x450
_raw_spin_trylock+0x98/0xd0
___ratelimit+0xf6/0x220
__ext4_msg+0x7f/0x160 [ext4]
ext4_orphan_cleanup+0x665/0x740 [ext4]
__ext4_fill_super+0x21ea/0x2b10 [ext4]
ext4_fill_super+0x14d/0x360 [ext4]
[...]
=========================================================
Normally interval is 0 until s_msg_ratelimit_state is initialized, so
___ratelimit() does nothing. But registering sysfs precedes initializing
rs->lock, so it is possible to change rs->interval to a non-zero value
via the msg_ratelimit_interval_ms interface of sysfs while rs->lock is
uninitialized, and then a call to ext4_msg triggers the problem by
accessing an uninitialized rs->lock. Therefore register sysfs after all
initializations are complete to avoid such problems. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/radeon: fix UBSAN warning in kv_dpm.c
Adds bounds check for sumo_vid_mapping_entry. |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: qedi: Fix crash while reading debugfs attribute
The qedi_dbg_do_not_recover_cmd_read() function invokes sprintf() directly
on a __user pointer, which results into the crash.
To fix this issue, use a small local stack buffer for sprintf() and then
call simple_read_from_buffer(), which in turns make the copy_to_user()
call.
BUG: unable to handle page fault for address: 00007f4801111000
PGD 8000000864df6067 P4D 8000000864df6067 PUD 864df7067 PMD 846028067 PTE 0
Oops: 0002 [#1] PREEMPT SMP PTI
Hardware name: HPE ProLiant DL380 Gen10/ProLiant DL380 Gen10, BIOS U30 06/15/2023
RIP: 0010:memcpy_orig+0xcd/0x130
RSP: 0018:ffffb7a18c3ffc40 EFLAGS: 00010202
RAX: 00007f4801111000 RBX: 00007f4801111000 RCX: 000000000000000f
RDX: 000000000000000f RSI: ffffffffc0bfd7a0 RDI: 00007f4801111000
RBP: ffffffffc0bfd7a0 R08: 725f746f6e5f6f64 R09: 3d7265766f636572
R10: ffffb7a18c3ffd08 R11: 0000000000000000 R12: 00007f4881110fff
R13: 000000007fffffff R14: ffffb7a18c3ffca0 R15: ffffffffc0bfd7af
FS: 00007f480118a740(0000) GS:ffff98e38af00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f4801111000 CR3: 0000000864b8e001 CR4: 00000000007706e0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
PKRU: 55555554
Call Trace:
<TASK>
? __die_body+0x1a/0x60
? page_fault_oops+0x183/0x510
? exc_page_fault+0x69/0x150
? asm_exc_page_fault+0x22/0x30
? memcpy_orig+0xcd/0x130
vsnprintf+0x102/0x4c0
sprintf+0x51/0x80
qedi_dbg_do_not_recover_cmd_read+0x2f/0x50 [qedi 6bcfdeeecdea037da47069eca2ba717c84a77324]
full_proxy_read+0x50/0x80
vfs_read+0xa5/0x2e0
? folio_add_new_anon_rmap+0x44/0xa0
? set_pte_at+0x15/0x30
? do_pte_missing+0x426/0x7f0
ksys_read+0xa5/0xe0
do_syscall_64+0x58/0x80
? __count_memcg_events+0x46/0x90
? count_memcg_event_mm+0x3d/0x60
? handle_mm_fault+0x196/0x2f0
? do_user_addr_fault+0x267/0x890
? exc_page_fault+0x69/0x150
entry_SYSCALL_64_after_hwframe+0x72/0xdc
RIP: 0033:0x7f4800f20b4d |
| In the Linux kernel, the following vulnerability has been resolved:
powerpc/pseries: Enforce hcall result buffer validity and size
plpar_hcall(), plpar_hcall9(), and related functions expect callers to
provide valid result buffers of certain minimum size. Currently this
is communicated only through comments in the code and the compiler has
no idea.
For example, if I write a bug like this:
long retbuf[PLPAR_HCALL_BUFSIZE]; // should be PLPAR_HCALL9_BUFSIZE
plpar_hcall9(H_ALLOCATE_VAS_WINDOW, retbuf, ...);
This compiles with no diagnostics emitted, but likely results in stack
corruption at runtime when plpar_hcall9() stores results past the end
of the array. (To be clear this is a contrived example and I have not
found a real instance yet.)
To make this class of error less likely, we can use explicitly-sized
array parameters instead of pointers in the declarations for the hcall
APIs. When compiled with -Warray-bounds[1], the code above now
provokes a diagnostic like this:
error: array argument is too small;
is of size 32, callee requires at least 72 [-Werror,-Warray-bounds]
60 | plpar_hcall9(H_ALLOCATE_VAS_WINDOW, retbuf,
| ^ ~~~~~~
[1] Enabled for LLVM builds but not GCC for now. See commit
0da6e5fd6c37 ("gcc: disable '-Warray-bounds' for gcc-13 too") and
related changes. |
| In the Linux kernel, the following vulnerability has been resolved:
ext4: do not create EA inode under buffer lock
ext4_xattr_set_entry() creates new EA inodes while holding buffer lock
on the external xattr block. This is problematic as it nests all the
allocation locking (which acquires locks on other buffers) under the
buffer lock. This can even deadlock when the filesystem is corrupted and
e.g. quota file is setup to contain xattr block as data block. Move the
allocation of EA inode out of ext4_xattr_set_entry() into the callers. |
| In the Linux kernel, the following vulnerability has been resolved:
serial: imx: Introduce timeout when waiting on transmitter empty
By waiting at most 1 second for USR2_TXDC to be set, we avoid a potential
deadlock.
In case of the timeout, there is not much we can do, so we simply ignore
the transmitter state and optimistically try to continue. |
| In the Linux kernel, the following vulnerability has been resolved:
tty: add the option to have a tty reject a new ldisc
... and use it to limit the virtual terminals to just N_TTY. They are
kind of special, and in particular, the "con_write()" routine violates
the "writes cannot sleep" rule that some ldiscs rely on.
This avoids the
BUG: sleeping function called from invalid context at kernel/printk/printk.c:2659
when N_GSM has been attached to a virtual console, and gsmld_write()
calls con_write() while holding a spinlock, and con_write() then tries
to get the console lock. |
| In the Linux kernel, the following vulnerability has been resolved:
i2c: lpi2c: Avoid calling clk_get_rate during transfer
Instead of repeatedly calling clk_get_rate for each transfer, lock
the clock rate and cache the value.
A deadlock has been observed while adding tlv320aic32x4 audio codec to
the system. When this clock provider adds its clock, the clk mutex is
locked already, it needs to access i2c, which in return needs the mutex
for clk_get_rate as well. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/i915/hwmon: Get rid of devm
When both hwmon and hwmon drvdata (on which hwmon depends) are device
managed resources, the expectation, on device unbind, is that hwmon will be
released before drvdata. However, in i915 there are two separate code
paths, which both release either drvdata or hwmon and either can be
released before the other. These code paths (for device unbind) are as
follows (see also the bug referenced below):
Call Trace:
release_nodes+0x11/0x70
devres_release_group+0xb2/0x110
component_unbind_all+0x8d/0xa0
component_del+0xa5/0x140
intel_pxp_tee_component_fini+0x29/0x40 [i915]
intel_pxp_fini+0x33/0x80 [i915]
i915_driver_remove+0x4c/0x120 [i915]
i915_pci_remove+0x19/0x30 [i915]
pci_device_remove+0x32/0xa0
device_release_driver_internal+0x19c/0x200
unbind_store+0x9c/0xb0
and
Call Trace:
release_nodes+0x11/0x70
devres_release_all+0x8a/0xc0
device_unbind_cleanup+0x9/0x70
device_release_driver_internal+0x1c1/0x200
unbind_store+0x9c/0xb0
This means that in i915, if use devm, we cannot gurantee that hwmon will
always be released before drvdata. Which means that we have a uaf if hwmon
sysfs is accessed when drvdata has been released but hwmon hasn't.
The only way out of this seems to be do get rid of devm_ and release/free
everything explicitly during device unbind.
v2: Change commit message and other minor code changes
v3: Cleanup from i915_hwmon_register on error (Armin Wolf)
v4: Eliminate potential static analyzer warning (Rodrigo)
Eliminate fetch_and_zero (Jani)
v5: Restore previous logic for ddat_gt->hwmon_dev error return (Andi) |
| In the Linux kernel, the following vulnerability has been resolved:
ALSA: timer: Set lower bound of start tick time
Currently ALSA timer doesn't have the lower limit of the start tick
time, and it allows a very small size, e.g. 1 tick with 1ns resolution
for hrtimer. Such a situation may lead to an unexpected RCU stall,
where the callback repeatedly queuing the expire update, as reported
by fuzzer.
This patch introduces a sanity check of the timer start tick time, so
that the system returns an error when a too small start size is set.
As of this patch, the lower limit is hard-coded to 100us, which is
small enough but can still work somehow. |
| In the Linux kernel, the following vulnerability has been resolved:
epoll: be better about file lifetimes
epoll can call out to vfs_poll() with a file pointer that may race with
the last 'fput()'. That would make f_count go down to zero, and while
the ep->mtx locking means that the resulting file pointer tear-down will
be blocked until the poll returns, it means that f_count is already
dead, and any use of it won't actually get a reference to the file any
more: it's dead regardless.
Make sure we have a valid ref on the file pointer before we call down to
vfs_poll() from the epoll routines. |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: lpfc: Move NPIV's transport unregistration to after resource clean up
There are cases after NPIV deletion where the fabric switch still believes
the NPIV is logged into the fabric. This occurs when a vport is
unregistered before the Remove All DA_ID CT and LOGO ELS are sent to the
fabric.
Currently fc_remove_host(), which calls dev_loss_tmo for all D_IDs including
the fabric D_ID, removes the last ndlp reference and frees the ndlp rport
object. This sometimes causes the race condition where the final DA_ID and
LOGO are skipped from being sent to the fabric switch.
Fix by moving the fc_remove_host() and scsi_remove_host() calls after DA_ID
and LOGO are sent. |
| In the Linux kernel, the following vulnerability has been resolved:
firewire: ohci: mask bus reset interrupts between ISR and bottom half
In the FireWire OHCI interrupt handler, if a bus reset interrupt has
occurred, mask bus reset interrupts until bus_reset_work has serviced and
cleared the interrupt.
Normally, we always leave bus reset interrupts masked. We infer the bus
reset from the self-ID interrupt that happens shortly thereafter. A
scenario where we unmask bus reset interrupts was introduced in 2008 in
a007bb857e0b26f5d8b73c2ff90782d9c0972620: If
OHCI_PARAM_DEBUG_BUSRESETS (8) is set in the debug parameter bitmask, we
will unmask bus reset interrupts so we can log them.
irq_handler logs the bus reset interrupt. However, we can't clear the bus
reset event flag in irq_handler, because we won't service the event until
later. irq_handler exits with the event flag still set. If the
corresponding interrupt is still unmasked, the first bus reset will
usually freeze the system due to irq_handler being called again each
time it exits. This freeze can be reproduced by loading firewire_ohci
with "modprobe firewire_ohci debug=-1" (to enable all debugging output).
Apparently there are also some cases where bus_reset_work will get called
soon enough to clear the event, and operation will continue normally.
This freeze was first reported a few months after a007bb85 was committed,
but until now it was never fixed. The debug level could safely be set
to -1 through sysfs after the module was loaded, but this would be
ineffectual in logging bus reset interrupts since they were only
unmasked during initialization.
irq_handler will now leave the event flag set but mask bus reset
interrupts, so irq_handler won't be called again and there will be no
freeze. If OHCI_PARAM_DEBUG_BUSRESETS is enabled, bus_reset_work will
unmask the interrupt after servicing the event, so future interrupts
will be caught as desired.
As a side effect to this change, OHCI_PARAM_DEBUG_BUSRESETS can now be
enabled through sysfs in addition to during initial module loading.
However, when enabled through sysfs, logging of bus reset interrupts will
be effective only starting with the second bus reset, after
bus_reset_work has executed. |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: lpfc: Release hbalock before calling lpfc_worker_wake_up()
lpfc_worker_wake_up() calls the lpfc_work_done() routine, which takes the
hbalock. Thus, lpfc_worker_wake_up() should not be called while holding the
hbalock to avoid potential deadlock. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: iwlwifi: read txq->read_ptr under lock
If we read txq->read_ptr without lock, we can read the same
value twice, then obtain the lock, and reclaim from there
to two different places, but crucially reclaim the same
entry twice, resulting in the WARN_ONCE() a little later.
Fix that by reading txq->read_ptr under lock. |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: bnx2fc: Remove spin_lock_bh while releasing resources after upload
The session resources are used by FW and driver when session is offloaded,
once session is uploaded these resources are not used. The lock is not
required as these fields won't be used any longer. The offload and upload
calls are sequential, hence lock is not required.
This will suppress following BUG_ON():
[ 449.843143] ------------[ cut here ]------------
[ 449.848302] kernel BUG at mm/vmalloc.c:2727!
[ 449.853072] invalid opcode: 0000 [#1] PREEMPT SMP PTI
[ 449.858712] CPU: 5 PID: 1996 Comm: kworker/u24:2 Not tainted 5.14.0-118.el9.x86_64 #1
Rebooting.
[ 449.867454] Hardware name: Dell Inc. PowerEdge R730/0WCJNT, BIOS 2.3.4 11/08/2016
[ 449.876966] Workqueue: fc_rport_eq fc_rport_work [libfc]
[ 449.882910] RIP: 0010:vunmap+0x2e/0x30
[ 449.887098] Code: 00 65 8b 05 14 a2 f0 4a a9 00 ff ff 00 75 1b 55 48 89 fd e8 34 36 79 00 48 85 ed 74 0b 48 89 ef 31 f6 5d e9 14 fc ff ff 5d c3 <0f> 0b 0f 1f 44 00 00 41 57 41 56 49 89 ce 41 55 49 89 fd 41 54 41
[ 449.908054] RSP: 0018:ffffb83d878b3d68 EFLAGS: 00010206
[ 449.913887] RAX: 0000000080000201 RBX: ffff8f4355133550 RCX: 000000000d400005
[ 449.921843] RDX: 0000000000000001 RSI: 0000000000001000 RDI: ffffb83da53f5000
[ 449.929808] RBP: ffff8f4ac6675800 R08: ffffb83d878b3d30 R09: 00000000000efbdf
[ 449.937774] R10: 0000000000000003 R11: ffff8f434573e000 R12: 0000000000001000
[ 449.945736] R13: 0000000000001000 R14: ffffb83da53f5000 R15: ffff8f43d4ea3ae0
[ 449.953701] FS: 0000000000000000(0000) GS:ffff8f529fc80000(0000) knlGS:0000000000000000
[ 449.962732] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 449.969138] CR2: 00007f8cf993e150 CR3: 0000000efbe10003 CR4: 00000000003706e0
[ 449.977102] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[ 449.985065] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
[ 449.993028] Call Trace:
[ 449.995756] __iommu_dma_free+0x96/0x100
[ 450.000139] bnx2fc_free_session_resc+0x67/0x240 [bnx2fc]
[ 450.006171] bnx2fc_upload_session+0xce/0x100 [bnx2fc]
[ 450.011910] bnx2fc_rport_event_handler+0x9f/0x240 [bnx2fc]
[ 450.018136] fc_rport_work+0x103/0x5b0 [libfc]
[ 450.023103] process_one_work+0x1e8/0x3c0
[ 450.027581] worker_thread+0x50/0x3b0
[ 450.031669] ? rescuer_thread+0x370/0x370
[ 450.036143] kthread+0x149/0x170
[ 450.039744] ? set_kthread_struct+0x40/0x40
[ 450.044411] ret_from_fork+0x22/0x30
[ 450.048404] Modules linked in: vfat msdos fat xfs nfs_layout_nfsv41_files rpcsec_gss_krb5 auth_rpcgss nfsv4 dns_resolver dm_service_time qedf qed crc8 bnx2fc libfcoe libfc scsi_transport_fc intel_rapl_msr intel_rapl_common x86_pkg_temp_thermal intel_powerclamp dcdbas rapl intel_cstate intel_uncore mei_me pcspkr mei ipmi_ssif lpc_ich ipmi_si fuse zram ext4 mbcache jbd2 loop nfsv3 nfs_acl nfs lockd grace fscache netfs irdma ice sd_mod t10_pi sg ib_uverbs ib_core 8021q garp mrp stp llc mgag200 i2c_algo_bit drm_kms_helper syscopyarea sysfillrect sysimgblt mxm_wmi fb_sys_fops cec crct10dif_pclmul ahci crc32_pclmul bnx2x drm ghash_clmulni_intel libahci rfkill i40e libata megaraid_sas mdio wmi sunrpc lrw dm_crypt dm_round_robin dm_multipath dm_snapshot dm_bufio dm_mirror dm_region_hash dm_log dm_zero dm_mod linear raid10 raid456 async_raid6_recov async_memcpy async_pq async_xor async_tx raid6_pq libcrc32c crc32c_intel raid1 raid0 iscsi_ibft squashfs be2iscsi bnx2i cnic uio cxgb4i cxgb4 tls
[ 450.048497] libcxgbi libcxgb qla4xxx iscsi_boot_sysfs iscsi_tcp libiscsi_tcp libiscsi scsi_transport_iscsi edd ipmi_devintf ipmi_msghandler
[ 450.159753] ---[ end trace 712de2c57c64abc8 ]--- |
| In the Linux kernel, the following vulnerability has been resolved:
ACPI: CPPC: Use access_width over bit_width for system memory accesses
To align with ACPI 6.3+, since bit_width can be any 8-bit value, it
cannot be depended on to be always on a clean 8b boundary. This was
uncovered on the Cobalt 100 platform.
SError Interrupt on CPU26, code 0xbe000011 -- SError
CPU: 26 PID: 1510 Comm: systemd-udevd Not tainted 5.15.2.1-13 #1
Hardware name: MICROSOFT CORPORATION, BIOS MICROSOFT CORPORATION
pstate: 62400009 (nZCv daif +PAN -UAO +TCO -DIT -SSBS BTYPE=--)
pc : cppc_get_perf_caps+0xec/0x410
lr : cppc_get_perf_caps+0xe8/0x410
sp : ffff8000155ab730
x29: ffff8000155ab730 x28: ffff0080139d0038 x27: ffff0080139d0078
x26: 0000000000000000 x25: ffff0080139d0058 x24: 00000000ffffffff
x23: ffff0080139d0298 x22: ffff0080139d0278 x21: 0000000000000000
x20: ffff00802b251910 x19: ffff0080139d0000 x18: ffffffffffffffff
x17: 0000000000000000 x16: ffffdc7e111bad04 x15: ffff00802b251008
x14: ffffffffffffffff x13: ffff013f1fd63300 x12: 0000000000000006
x11: ffffdc7e128f4420 x10: 0000000000000000 x9 : ffffdc7e111badec
x8 : ffff00802b251980 x7 : 0000000000000000 x6 : ffff0080139d0028
x5 : 0000000000000000 x4 : ffff0080139d0018 x3 : 00000000ffffffff
x2 : 0000000000000008 x1 : ffff8000155ab7a0 x0 : 0000000000000000
Kernel panic - not syncing: Asynchronous SError Interrupt
CPU: 26 PID: 1510 Comm: systemd-udevd Not tainted
5.15.2.1-13 #1
Hardware name: MICROSOFT CORPORATION, BIOS MICROSOFT CORPORATION
Call trace:
dump_backtrace+0x0/0x1e0
show_stack+0x24/0x30
dump_stack_lvl+0x8c/0xb8
dump_stack+0x18/0x34
panic+0x16c/0x384
add_taint+0x0/0xc0
arm64_serror_panic+0x7c/0x90
arm64_is_fatal_ras_serror+0x34/0xa4
do_serror+0x50/0x6c
el1h_64_error_handler+0x40/0x74
el1h_64_error+0x7c/0x80
cppc_get_perf_caps+0xec/0x410
cppc_cpufreq_cpu_init+0x74/0x400 [cppc_cpufreq]
cpufreq_online+0x2dc/0xa30
cpufreq_add_dev+0xc0/0xd4
subsys_interface_register+0x134/0x14c
cpufreq_register_driver+0x1b0/0x354
cppc_cpufreq_init+0x1a8/0x1000 [cppc_cpufreq]
do_one_initcall+0x50/0x250
do_init_module+0x60/0x27c
load_module+0x2300/0x2570
__do_sys_finit_module+0xa8/0x114
__arm64_sys_finit_module+0x2c/0x3c
invoke_syscall+0x78/0x100
el0_svc_common.constprop.0+0x180/0x1a0
do_el0_svc+0x84/0xa0
el0_svc+0x2c/0xc0
el0t_64_sync_handler+0xa4/0x12c
el0t_64_sync+0x1a4/0x1a8
Instead, use access_width to determine the size and use the offset and
width to shift and mask the bits to read/write out. Make sure to add a
check for system memory since pcc redefines the access_width to
subspace id.
If access_width is not set, then fall back to using bit_width.
[ rjw: Subject and changelog edits, comment adjustments ] |
| In the Linux kernel, the following vulnerability has been resolved:
drm/client: Fully protect modes[] with dev->mode_config.mutex
The modes[] array contains pointers to modes on the connectors'
mode lists, which are protected by dev->mode_config.mutex.
Thus we need to extend modes[] the same protection or by the
time we use it the elements may already be pointing to
freed/reused memory. |