| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
video: fbdev: vt8623fb: Check the size of screen before memset_io()
In the function vt8623fb_set_par(), the value of 'screen_size' is
calculated by the user input. If the user provides the improper value,
the value of 'screen_size' may larger than 'info->screen_size', which
may cause the following bug:
[ 583.339036] BUG: unable to handle page fault for address: ffffc90005000000
[ 583.339049] #PF: supervisor write access in kernel mode
[ 583.339052] #PF: error_code(0x0002) - not-present page
[ 583.339074] RIP: 0010:memset_orig+0x33/0xb0
[ 583.339110] Call Trace:
[ 583.339118] vt8623fb_set_par+0x11cd/0x21e0
[ 583.339146] fb_set_var+0x604/0xeb0
[ 583.339181] do_fb_ioctl+0x234/0x670
[ 583.339209] fb_ioctl+0xdd/0x130
Fix the this by checking the value of 'screen_size' before memset_io(). |
| A Remote Gain Privileged Access vulnerability in HPE Vertica Analytics Platform version v4.1 and later was found. |
| In the Linux kernel, the following vulnerability has been resolved:
fuse: write inode in fuse_release()
A race between write(2) and close(2) allows pages to be dirtied after
fuse_flush -> write_inode_now(). If these pages are not flushed from
fuse_release(), then there might not be a writable open file later. So any
remaining dirty pages must be written back before the file is released.
This is a partial revert of the blamed commit. |
| In the Linux kernel, the following vulnerability has been resolved:
tty: vt: initialize unicode screen buffer
syzbot reports kernel infoleak at vcs_read() [1], for buffer can be read
immediately after resize operation. Initialize buffer using kzalloc().
----------
#include <fcntl.h>
#include <unistd.h>
#include <sys/ioctl.h>
#include <linux/fb.h>
int main(int argc, char *argv[])
{
struct fb_var_screeninfo var = { };
const int fb_fd = open("/dev/fb0", 3);
ioctl(fb_fd, FBIOGET_VSCREENINFO, &var);
var.yres = 0x21;
ioctl(fb_fd, FBIOPUT_VSCREENINFO, &var);
return read(open("/dev/vcsu", O_RDONLY), &var, sizeof(var)) == -1;
}
---------- |
| In the Linux kernel, the following vulnerability has been resolved:
LoongArch: cpuinfo: Fix a warning for CONFIG_CPUMASK_OFFSTACK
When CONFIG_CPUMASK_OFFSTACK and CONFIG_DEBUG_PER_CPU_MAPS is selected,
cpu_max_bits_warn() generates a runtime warning similar as below while
we show /proc/cpuinfo. Fix this by using nr_cpu_ids (the runtime limit)
instead of NR_CPUS to iterate CPUs.
[ 3.052463] ------------[ cut here ]------------
[ 3.059679] WARNING: CPU: 3 PID: 1 at include/linux/cpumask.h:108 show_cpuinfo+0x5e8/0x5f0
[ 3.070072] Modules linked in: efivarfs autofs4
[ 3.076257] CPU: 0 PID: 1 Comm: systemd Not tainted 5.19-rc5+ #1052
[ 3.084034] Hardware name: Loongson Loongson-3A5000-7A1000-1w-V0.1-CRB/Loongson-LS3A5000-7A1000-1w-EVB-V1.21, BIOS Loongson-UDK2018-V2.0.04082-beta7 04/27
[ 3.099465] Stack : 9000000100157b08 9000000000f18530 9000000000cf846c 9000000100154000
[ 3.109127] 9000000100157a50 0000000000000000 9000000100157a58 9000000000ef7430
[ 3.118774] 90000001001578e8 0000000000000040 0000000000000020 ffffffffffffffff
[ 3.128412] 0000000000aaaaaa 1ab25f00eec96a37 900000010021de80 900000000101c890
[ 3.138056] 0000000000000000 0000000000000000 0000000000000000 0000000000aaaaaa
[ 3.147711] ffff8000339dc220 0000000000000001 0000000006ab4000 0000000000000000
[ 3.157364] 900000000101c998 0000000000000004 9000000000ef7430 0000000000000000
[ 3.167012] 0000000000000009 000000000000006c 0000000000000000 0000000000000000
[ 3.176641] 9000000000d3de08 9000000001639390 90000000002086d8 00007ffff0080286
[ 3.186260] 00000000000000b0 0000000000000004 0000000000000000 0000000000071c1c
[ 3.195868] ...
[ 3.199917] Call Trace:
[ 3.203941] [<90000000002086d8>] show_stack+0x38/0x14c
[ 3.210666] [<9000000000cf846c>] dump_stack_lvl+0x60/0x88
[ 3.217625] [<900000000023d268>] __warn+0xd0/0x100
[ 3.223958] [<9000000000cf3c90>] warn_slowpath_fmt+0x7c/0xcc
[ 3.231150] [<9000000000210220>] show_cpuinfo+0x5e8/0x5f0
[ 3.238080] [<90000000004f578c>] seq_read_iter+0x354/0x4b4
[ 3.245098] [<90000000004c2e90>] new_sync_read+0x17c/0x1c4
[ 3.252114] [<90000000004c5174>] vfs_read+0x138/0x1d0
[ 3.258694] [<90000000004c55f8>] ksys_read+0x70/0x100
[ 3.265265] [<9000000000cfde9c>] do_syscall+0x7c/0x94
[ 3.271820] [<9000000000202fe4>] handle_syscall+0xc4/0x160
[ 3.281824] ---[ end trace 8b484262b4b8c24c ]--- |
| In the Linux kernel, the following vulnerability has been resolved:
KVM: x86/mmu: Treat NX as a valid SPTE bit for NPT
Treat the NX bit as valid when using NPT, as KVM will set the NX bit when
the NX huge page mitigation is enabled (mindblowing) and trigger the WARN
that fires on reserved SPTE bits being set.
KVM has required NX support for SVM since commit b26a71a1a5b9 ("KVM: SVM:
Refuse to load kvm_amd if NX support is not available") for exactly this
reason, but apparently it never occurred to anyone to actually test NPT
with the mitigation enabled.
------------[ cut here ]------------
spte = 0x800000018a600ee7, level = 2, rsvd bits = 0x800f0000001fe000
WARNING: CPU: 152 PID: 15966 at arch/x86/kvm/mmu/spte.c:215 make_spte+0x327/0x340 [kvm]
Hardware name: Google, Inc. Arcadia_IT_80/Arcadia_IT_80, BIOS 10.48.0 01/27/2022
RIP: 0010:make_spte+0x327/0x340 [kvm]
Call Trace:
<TASK>
tdp_mmu_map_handle_target_level+0xc3/0x230 [kvm]
kvm_tdp_mmu_map+0x343/0x3b0 [kvm]
direct_page_fault+0x1ae/0x2a0 [kvm]
kvm_tdp_page_fault+0x7d/0x90 [kvm]
kvm_mmu_page_fault+0xfb/0x2e0 [kvm]
npf_interception+0x55/0x90 [kvm_amd]
svm_invoke_exit_handler+0x31/0xf0 [kvm_amd]
svm_handle_exit+0xf6/0x1d0 [kvm_amd]
vcpu_enter_guest+0xb6d/0xee0 [kvm]
? kvm_pmu_trigger_event+0x6d/0x230 [kvm]
vcpu_run+0x65/0x2c0 [kvm]
kvm_arch_vcpu_ioctl_run+0x355/0x610 [kvm]
kvm_vcpu_ioctl+0x551/0x610 [kvm]
__se_sys_ioctl+0x77/0xc0
__x64_sys_ioctl+0x1d/0x20
do_syscall_64+0x44/0xa0
entry_SYSCALL_64_after_hwframe+0x46/0xb0
</TASK>
---[ end trace 0000000000000000 ]--- |
| In the Linux kernel, the following vulnerability has been resolved:
KVM: x86/xen: Initialize Xen timer only once
Add a check for existing xen timers before initializing a new one.
Currently kvm_xen_init_timer() is called on every
KVM_XEN_VCPU_ATTR_TYPE_TIMER, which is causing the following ODEBUG
crash when vcpu->arch.xen.timer is already set.
ODEBUG: init active (active state 0)
object type: hrtimer hint: xen_timer_callbac0
RIP: 0010:debug_print_object+0x16e/0x250 lib/debugobjects.c:502
Call Trace:
__debug_object_init
debug_hrtimer_init
debug_init
hrtimer_init
kvm_xen_init_timer
kvm_xen_vcpu_set_attr
kvm_arch_vcpu_ioctl
kvm_vcpu_ioctl
vfs_ioctl |
| In the Linux kernel, the following vulnerability has been resolved:
KVM: SVM: Don't BUG if userspace injects an interrupt with GIF=0
Don't BUG/WARN on interrupt injection due to GIF being cleared,
since it's trivial for userspace to force the situation via
KVM_SET_VCPU_EVENTS (even if having at least a WARN there would be correct
for KVM internally generated injections).
kernel BUG at arch/x86/kvm/svm/svm.c:3386!
invalid opcode: 0000 [#1] SMP
CPU: 15 PID: 926 Comm: smm_test Not tainted 5.17.0-rc3+ #264
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 0.0.0 02/06/2015
RIP: 0010:svm_inject_irq+0xab/0xb0 [kvm_amd]
Code: <0f> 0b 0f 1f 00 0f 1f 44 00 00 80 3d ac b3 01 00 00 55 48 89 f5 53
RSP: 0018:ffffc90000b37d88 EFLAGS: 00010246
RAX: 0000000000000000 RBX: ffff88810a234ac0 RCX: 0000000000000006
RDX: 0000000000000000 RSI: ffffc90000b37df7 RDI: ffff88810a234ac0
RBP: ffffc90000b37df7 R08: ffff88810a1fa410 R09: 0000000000000000
R10: 0000000000000000 R11: 0000000000000000 R12: 0000000000000000
R13: ffff888109571000 R14: ffff88810a234ac0 R15: 0000000000000000
FS: 0000000001821380(0000) GS:ffff88846fdc0000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f74fc550008 CR3: 000000010a6fe000 CR4: 0000000000350ea0
Call Trace:
<TASK>
inject_pending_event+0x2f7/0x4c0 [kvm]
kvm_arch_vcpu_ioctl_run+0x791/0x17a0 [kvm]
kvm_vcpu_ioctl+0x26d/0x650 [kvm]
__x64_sys_ioctl+0x82/0xb0
do_syscall_64+0x3b/0xc0
entry_SYSCALL_64_after_hwframe+0x44/0xae
</TASK> |
| In the Linux kernel, the following vulnerability has been resolved:
arm64: set UXN on swapper page tables
[ This issue was fixed upstream by accident in c3cee924bd85 ("arm64:
head: cover entire kernel image in initial ID map") as part of a
large refactoring of the arm64 boot flow. This simple fix is therefore
preferred for -stable backporting ]
On a system that implements FEAT_EPAN, read/write access to the idmap
is denied because UXN is not set on the swapper PTEs. As a result,
idmap_kpti_install_ng_mappings panics the kernel when accessing
__idmap_kpti_flag. Fix it by setting UXN on these PTEs. |
| In the Linux kernel, the following vulnerability has been resolved:
arm64: set UXN on swapper page tables
[ This issue was fixed upstream by accident in c3cee924bd85 ("arm64:
head: cover entire kernel image in initial ID map") as part of a
large refactoring of the arm64 boot flow. This simple fix is therefore
preferred for -stable backporting ]
On a system that implements FEAT_EPAN, read/write access to the idmap
is denied because UXN is not set on the swapper PTEs. As a result,
idmap_kpti_install_ng_mappings panics the kernel when accessing
__idmap_kpti_flag. Fix it by setting UXN on these PTEs. |
| In the Linux kernel, the following vulnerability has been resolved:
erofs: wake up all waiters after z_erofs_lzma_head ready
When the user mounts the erofs second times, the decompression thread
may hung. The problem happens due to a sequence of steps like the
following:
1) Task A called z_erofs_load_lzma_config which obtain all of the node
from the z_erofs_lzma_head.
2) At this time, task B called the z_erofs_lzma_decompress and wanted to
get a node. But the z_erofs_lzma_head was empty, the Task B had to
sleep.
3) Task A release nodes and push nodes into the z_erofs_lzma_head. But
task B was still sleeping.
One example report when the hung happens:
task:kworker/u3:1 state:D stack:14384 pid: 86 ppid: 2 flags:0x00004000
Workqueue: erofs_unzipd z_erofs_decompressqueue_work
Call Trace:
<TASK>
__schedule+0x281/0x760
schedule+0x49/0xb0
z_erofs_lzma_decompress+0x4bc/0x580
? cpu_core_flags+0x10/0x10
z_erofs_decompress_pcluster+0x49b/0xba0
? __update_load_avg_se+0x2b0/0x330
? __update_load_avg_se+0x2b0/0x330
? update_load_avg+0x5f/0x690
? update_load_avg+0x5f/0x690
? set_next_entity+0xbd/0x110
? _raw_spin_unlock+0xd/0x20
z_erofs_decompress_queue.isra.0+0x2e/0x50
z_erofs_decompressqueue_work+0x30/0x60
process_one_work+0x1d3/0x3a0
worker_thread+0x45/0x3a0
? process_one_work+0x3a0/0x3a0
kthread+0xe2/0x110
? kthread_complete_and_exit+0x20/0x20
ret_from_fork+0x22/0x30
</TASK> |
| In the Linux kernel, the following vulnerability has been resolved:
ARM: dts: qcom: replace gcc PXO with pxo_board fixed clock
Replace gcc PXO phandle to pxo_board fixed clock declared in the dts.
gcc driver doesn't provide PXO_SRC as it's a fixed-clock. This cause a
kernel panic if any driver actually try to use it. |
| In the Linux kernel, the following vulnerability has been resolved:
rxrpc: Fix irq-disabled in local_bh_enable()
The rxrpc_assess_MTU_size() function calls down into the IP layer to find
out the MTU size for a route. When accepting an incoming call, this is
called from rxrpc_new_incoming_call() which holds interrupts disabled
across the code that calls down to it. Unfortunately, the IP layer uses
local_bh_enable() which, config dependent, throws a warning if IRQs are
enabled:
WARNING: CPU: 1 PID: 5544 at kernel/softirq.c:387 __local_bh_enable_ip+0x43/0xd0
...
RIP: 0010:__local_bh_enable_ip+0x43/0xd0
...
Call Trace:
<TASK>
rt_cache_route+0x7e/0xa0
rt_set_nexthop.isra.0+0x3b3/0x3f0
__mkroute_output+0x43a/0x460
ip_route_output_key_hash+0xf7/0x140
ip_route_output_flow+0x1b/0x90
rxrpc_assess_MTU_size.isra.0+0x2a0/0x590
rxrpc_new_incoming_peer+0x46/0x120
rxrpc_alloc_incoming_call+0x1b1/0x400
rxrpc_new_incoming_call+0x1da/0x5e0
rxrpc_input_packet+0x827/0x900
rxrpc_io_thread+0x403/0xb60
kthread+0x2f7/0x310
ret_from_fork+0x2a/0x230
ret_from_fork_asm+0x1a/0x30
...
hardirqs last enabled at (23): _raw_spin_unlock_irq+0x24/0x50
hardirqs last disabled at (24): _raw_read_lock_irq+0x17/0x70
softirqs last enabled at (0): copy_process+0xc61/0x2730
softirqs last disabled at (25): rt_add_uncached_list+0x3c/0x90
Fix this by moving the call to rxrpc_assess_MTU_size() out of
rxrpc_init_peer() and further up the stack where it can be done without
interrupts disabled.
It shouldn't be a problem for rxrpc_new_incoming_call() to do it after the
locks are dropped as pmtud is going to be performed by the I/O thread - and
we're in the I/O thread at this point. |
| In the Linux kernel, the following vulnerability has been resolved:
x86/CPU/AMD: Disable INVLPGB on Zen2
AMD Cyan Skillfish (Family 17h, Model 47h, Stepping 0h) has an issue
that causes system oopses and panics when performing TLB flush using
INVLPGB.
However, the problem is that that machine has misconfigured CPUID and
should not report the INVLPGB bit in the first place. So zap the
kernel's representation of the flag so that nothing gets confused.
[ bp: Massage. ] |
| In the Linux kernel, the following vulnerability has been resolved:
drm/xe/pf: Clear all LMTT pages on alloc
Our LMEM buffer objects are not cleared by default on alloc
and during VF provisioning we only setup LMTT PTEs for the
actually provisioned LMEM range. But beyond that valid range
we might leave some stale data that could either point to some
other VFs allocations or even to the PF pages.
Explicitly clear all new LMTT page to avoid the risk that a
malicious VF would try to exploit that gap.
While around add asserts to catch any undesired PTE overwrites
and low-level debug traces to track LMTT PT life-cycle.
(cherry picked from commit 3fae6918a3e27cce20ded2551f863fb05d4bef8d) |
| Directus is a real-time API and App dashboard for managing SQL database content. Prior to version 11.2.0, when sharing an item, a typical user can specify an arbitrary role. It allows the user to use a higher-privileged role to see fields that otherwise the user should not be able to see. Instances that are impacted are those that use the share feature and have specific roles hierarchy and fields that are not visible for certain roles. Version 11.2.0 contains a patch the issue. |
| Directus is a real-time API and App dashboard for managing SQL database content. Starting in version 11.0.0 and prior to version 11.3.0, when setting `WEBSOCKETS_GRAPHQL_AUTH` or `WEBSOCKETS_REST_AUTH` to "public", an unauthenticated user is able to do any of the supported operations (CRUD, subscriptions) with full admin privileges. This impacts any Directus instance that has either `WEBSOCKETS_GRAPHQL_AUTH` or `WEBSOCKETS_REST_AUTH` set to `public` allowing unauthenticated users to subscribe for changes on any collection or do REST CRUD operations on user defined collections ignoring permissions. Version 11.3.0 fixes the issue. |
| In the Linux kernel, the following vulnerability has been resolved:
ax25: fix incorrect dev_tracker usage
While investigating a separate rose issue [1], and enabling
CONFIG_NET_DEV_REFCNT_TRACKER=y, Bernard reported an orthogonal ax25 issue [2]
An ax25_dev can be used by one (or many) struct ax25_cb.
We thus need different dev_tracker, one per struct ax25_cb.
After this patch is applied, we are able to focus on rose.
[1] https://lore.kernel.org/netdev/fb7544a1-f42e-9254-18cc-c9b071f4ca70@free.fr/
[2]
[ 205.798723] reference already released.
[ 205.798732] allocated in:
[ 205.798734] ax25_bind+0x1a2/0x230 [ax25]
[ 205.798747] __sys_bind+0xea/0x110
[ 205.798753] __x64_sys_bind+0x18/0x20
[ 205.798758] do_syscall_64+0x5c/0x80
[ 205.798763] entry_SYSCALL_64_after_hwframe+0x44/0xae
[ 205.798768] freed in:
[ 205.798770] ax25_release+0x115/0x370 [ax25]
[ 205.798778] __sock_release+0x42/0xb0
[ 205.798782] sock_close+0x15/0x20
[ 205.798785] __fput+0x9f/0x260
[ 205.798789] ____fput+0xe/0x10
[ 205.798792] task_work_run+0x64/0xa0
[ 205.798798] exit_to_user_mode_prepare+0x18b/0x190
[ 205.798804] syscall_exit_to_user_mode+0x26/0x40
[ 205.798808] do_syscall_64+0x69/0x80
[ 205.798812] entry_SYSCALL_64_after_hwframe+0x44/0xae
[ 205.798827] ------------[ cut here ]------------
[ 205.798829] WARNING: CPU: 2 PID: 2605 at lib/ref_tracker.c:136 ref_tracker_free.cold+0x60/0x81
[ 205.798837] Modules linked in: rose netrom mkiss ax25 rfcomm cmac algif_hash algif_skcipher af_alg bnep snd_hda_codec_hdmi nls_iso8859_1 i915 rtw88_8821ce rtw88_8821c x86_pkg_temp_thermal rtw88_pci intel_powerclamp rtw88_core snd_hda_codec_realtek snd_hda_codec_generic ledtrig_audio coretemp snd_hda_intel kvm_intel snd_intel_dspcfg mac80211 snd_hda_codec kvm i2c_algo_bit drm_buddy drm_dp_helper btusb drm_kms_helper snd_hwdep btrtl snd_hda_core btbcm joydev crct10dif_pclmul btintel crc32_pclmul ghash_clmulni_intel mei_hdcp btmtk intel_rapl_msr aesni_intel bluetooth input_leds snd_pcm crypto_simd syscopyarea processor_thermal_device_pci_legacy sysfillrect cryptd intel_soc_dts_iosf snd_seq sysimgblt ecdh_generic fb_sys_fops rapl libarc4 processor_thermal_device intel_cstate processor_thermal_rfim cec snd_timer ecc snd_seq_device cfg80211 processor_thermal_mbox mei_me processor_thermal_rapl mei rc_core at24 snd intel_pch_thermal intel_rapl_common ttm soundcore int340x_thermal_zone video
[ 205.798948] mac_hid acpi_pad sch_fq_codel ipmi_devintf ipmi_msghandler drm msr parport_pc ppdev lp parport ramoops pstore_blk reed_solomon pstore_zone efi_pstore ip_tables x_tables autofs4 hid_generic usbhid hid i2c_i801 i2c_smbus r8169 xhci_pci ahci libahci realtek lpc_ich xhci_pci_renesas [last unloaded: ax25]
[ 205.798992] CPU: 2 PID: 2605 Comm: ax25ipd Not tainted 5.18.11-F6BVP #3
[ 205.798996] Hardware name: To be filled by O.E.M. To be filled by O.E.M./CK3, BIOS 5.011 09/16/2020
[ 205.798999] RIP: 0010:ref_tracker_free.cold+0x60/0x81
[ 205.799005] Code: e8 d2 01 9b ff 83 7b 18 00 74 14 48 c7 c7 2f d7 ff 98 e8 10 6e fc ff 8b 7b 18 e8 b8 01 9b ff 4c 89 ee 4c 89 e7 e8 5d fd 07 00 <0f> 0b b8 ea ff ff ff e9 30 05 9b ff 41 0f b6 f7 48 c7 c7 a0 fa 4e
[ 205.799008] RSP: 0018:ffffaf5281073958 EFLAGS: 00010286
[ 205.799011] RAX: 0000000080000000 RBX: ffff9a0bd687ebe0 RCX: 0000000000000000
[ 205.799014] RDX: 0000000000000001 RSI: 0000000000000282 RDI: 00000000ffffffff
[ 205.799016] RBP: ffffaf5281073a10 R08: 0000000000000003 R09: fffffffffffd5618
[ 205.799019] R10: 0000000000ffff10 R11: 000000000000000f R12: ffff9a0bc53384d0
[ 205.799022] R13: 0000000000000282 R14: 00000000ae000001 R15: 0000000000000001
[ 205.799024] FS: 0000000000000000(0000) GS:ffff9a0d0f300000(0000) knlGS:0000000000000000
[ 205.799028] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 205.799031] CR2: 00007ff6b8311554 CR3: 000000001ac10004 CR4: 00000000001706e0
[ 205.799033] Call Trace:
[ 205.799035] <TASK>
[ 205.799038] ? ax25_dev_device_down+0xd9/
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
fuse: fix runtime warning on truncate_folio_batch_exceptionals()
The WARN_ON_ONCE is introduced on truncate_folio_batch_exceptionals() to
capture whether the filesystem has removed all DAX entries or not.
And the fix has been applied on the filesystem xfs and ext4 by the commit
0e2f80afcfa6 ("fs/dax: ensure all pages are idle prior to filesystem
unmount").
Apply the missed fix on filesystem fuse to fix the runtime warning:
[ 2.011450] ------------[ cut here ]------------
[ 2.011873] WARNING: CPU: 0 PID: 145 at mm/truncate.c:89 truncate_folio_batch_exceptionals+0x272/0x2b0
[ 2.012468] Modules linked in:
[ 2.012718] CPU: 0 UID: 1000 PID: 145 Comm: weston Not tainted 6.16.0-rc2-WSL2-STABLE #2 PREEMPT(undef)
[ 2.013292] RIP: 0010:truncate_folio_batch_exceptionals+0x272/0x2b0
[ 2.013704] Code: 48 63 d0 41 29 c5 48 8d 1c d5 00 00 00 00 4e 8d 6c 2a 01 49 c1 e5 03 eb 09 48 83 c3 08 49 39 dd 74 83 41 f6 44 1c 08 01 74 ef <0f> 0b 49 8b 34 1e 48 89 ef e8 10 a2 17 00 eb df 48 8b 7d 00 e8 35
[ 2.014845] RSP: 0018:ffffa47ec33f3b10 EFLAGS: 00010202
[ 2.015279] RAX: 0000000000000000 RBX: 0000000000000000 RCX: 0000000000000000
[ 2.015884] RDX: 0000000000000000 RSI: ffffa47ec33f3ca0 RDI: ffff98aa44f3fa80
[ 2.016377] RBP: ffff98aa44f3fbf0 R08: ffffa47ec33f3ba8 R09: 0000000000000000
[ 2.016942] R10: 0000000000000001 R11: 0000000000000000 R12: ffffa47ec33f3ca0
[ 2.017437] R13: 0000000000000008 R14: ffffa47ec33f3ba8 R15: 0000000000000000
[ 2.017972] FS: 000079ce006afa40(0000) GS:ffff98aade441000(0000) knlGS:0000000000000000
[ 2.018510] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 2.018987] CR2: 000079ce03e74000 CR3: 000000010784f006 CR4: 0000000000372eb0
[ 2.019518] Call Trace:
[ 2.019729] <TASK>
[ 2.019901] truncate_inode_pages_range+0xd8/0x400
[ 2.020280] ? timerqueue_add+0x66/0xb0
[ 2.020574] ? get_nohz_timer_target+0x2a/0x140
[ 2.020904] ? timerqueue_add+0x66/0xb0
[ 2.021231] ? timerqueue_del+0x2e/0x50
[ 2.021646] ? __remove_hrtimer+0x39/0x90
[ 2.022017] ? srso_alias_untrain_ret+0x1/0x10
[ 2.022497] ? psi_group_change+0x136/0x350
[ 2.023046] ? _raw_spin_unlock+0xe/0x30
[ 2.023514] ? finish_task_switch.isra.0+0x8d/0x280
[ 2.024068] ? __schedule+0x532/0xbd0
[ 2.024551] fuse_evict_inode+0x29/0x190
[ 2.025131] evict+0x100/0x270
[ 2.025641] ? _atomic_dec_and_lock+0x39/0x50
[ 2.026316] ? __pfx_generic_delete_inode+0x10/0x10
[ 2.026843] __dentry_kill+0x71/0x180
[ 2.027335] dput+0xeb/0x1b0
[ 2.027725] __fput+0x136/0x2b0
[ 2.028054] __x64_sys_close+0x3d/0x80
[ 2.028469] do_syscall_64+0x6d/0x1b0
[ 2.028832] ? clear_bhb_loop+0x30/0x80
[ 2.029182] ? clear_bhb_loop+0x30/0x80
[ 2.029533] ? clear_bhb_loop+0x30/0x80
[ 2.029902] entry_SYSCALL_64_after_hwframe+0x76/0x7e
[ 2.030423] RIP: 0033:0x79ce03d0d067
[ 2.030820] Code: b8 ff ff ff ff e9 3e ff ff ff 66 0f 1f 84 00 00 00 00 00 f3 0f 1e fa 64 8b 04 25 18 00 00 00 85 c0 75 10 b8 03 00 00 00 0f 05 <48> 3d 00 f0 ff ff 77 41 c3 48 83 ec 18 89 7c 24 0c e8 c3 a7 f8 ff
[ 2.032354] RSP: 002b:00007ffef0498948 EFLAGS: 00000246 ORIG_RAX: 0000000000000003
[ 2.032939] RAX: ffffffffffffffda RBX: 00007ffef0498960 RCX: 000079ce03d0d067
[ 2.033612] RDX: 0000000000000003 RSI: 0000000000001000 RDI: 000000000000000d
[ 2.034289] RBP: 00007ffef0498a30 R08: 000000000000000d R09: 0000000000000000
[ 2.034944] R10: 00007ffef0498978 R11: 0000000000000246 R12: 0000000000000001
[ 2.035610] R13: 00007ffef0498960 R14: 000079ce03e09ce0 R15: 0000000000000003
[ 2.036301] </TASK>
[ 2.036532] ---[ end trace 0000000000000000 ]--- |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amd/display: Add more checks for DSC / HUBP ONO guarantees
[WHY]
For non-zero DSC instances it's possible that the HUBP domain required
to drive it for sequential ONO ASICs isn't met, potentially causing
the logic to the tile to enter an undefined state leading to a system
hang.
[HOW]
Add more checks to ensure that the HUBP domain matching the DSC instance
is appropriately powered.
(cherry picked from commit da63df07112e5a9857a8d2aaa04255c4206754ec) |