| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
media: usb: go7007: s2250-board: fix leak in probe()
Call i2c_unregister_device(audio) on this error path. |
| In the Linux kernel, the following vulnerability has been resolved:
firmware: sysfb: fix platform-device leak in error path
Make sure to free the platform device also in the unlikely event that
registration fails. |
| In the Linux kernel, the following vulnerability has been resolved:
ALSA: pcm: Fix potential AB/BA lock with buffer_mutex and mmap_lock
syzbot caught a potential deadlock between the PCM
runtime->buffer_mutex and the mm->mmap_lock. It was brought by the
recent fix to cover the racy read/write and other ioctls, and in that
commit, I overlooked a (hopefully only) corner case that may take the
revert lock, namely, the OSS mmap. The OSS mmap operation
exceptionally allows to re-configure the parameters inside the OSS
mmap syscall, where mm->mmap_mutex is already held. Meanwhile, the
copy_from/to_user calls at read/write operations also take the
mm->mmap_lock internally, hence it may lead to a AB/BA deadlock.
A similar problem was already seen in the past and we fixed it with a
refcount (in commit b248371628aa). The former fix covered only the
call paths with OSS read/write and OSS ioctls, while we need to cover
the concurrent access via both ALSA and OSS APIs now.
This patch addresses the problem above by replacing the buffer_mutex
lock in the read/write operations with a refcount similar as we've
used for OSS. The new field, runtime->buffer_accessing, keeps the
number of concurrent read/write operations. Unlike the former
buffer_mutex protection, this protects only around the
copy_from/to_user() calls; the other codes are basically protected by
the PCM stream lock. The refcount can be a negative, meaning blocked
by the ioctls. If a negative value is seen, the read/write aborts
with -EBUSY. In the ioctl side, OTOH, they check this refcount, too,
and set to a negative value for blocking unless it's already being
accessed. |
| In the Linux kernel, the following vulnerability has been resolved:
ASoC: SOF: Intel: Fix NULL ptr dereference when ENOMEM
Do not call snd_dma_free_pages() when snd_dma_alloc_pages() returns
-ENOMEM because it leads to a NULL pointer dereference bug.
The dmesg says:
[ T1387] sof-audio-pci-intel-tgl 0000:00:1f.3: error: memory alloc failed: -12
[ T1387] BUG: kernel NULL pointer dereference, address: 0000000000000000
[ T1387] #PF: supervisor read access in kernel mode
[ T1387] #PF: error_code(0x0000) - not-present page
[ T1387] PGD 0 P4D 0
[ T1387] Oops: 0000 [#1] PREEMPT SMP NOPTI
[ T1387] CPU: 6 PID: 1387 Comm: alsa-sink-HDA A Tainted: G W 5.17.0-rc4-superb-owl-00055-g80d47f5de5e3
[ T1387] Hardware name: HP HP Laptop 14s-dq2xxx/87FD, BIOS F.15 09/15/2021
[ T1387] RIP: 0010:dma_free_noncontiguous+0x37/0x80
[ T1387] Code: [... snip ...]
[ T1387] RSP: 0000:ffffc90002b87770 EFLAGS: 00010246
[ T1387] RAX: 0000000000000000 RBX: 0000000000000000 RCX: 0000000000000000
[ T1387] RDX: 0000000000000000 RSI: 0000000000000000 RDI: ffff888101db30d0
[ T1387] RBP: 00000000fffffff4 R08: 0000000000000000 R09: 0000000000000000
[ T1387] R10: 0000000000000000 R11: ffffc90002b874d0 R12: 0000000000000001
[ T1387] R13: 0000000000058000 R14: ffff888105260c68 R15: ffff888105260828
[ T1387] FS: 00007f42e2ffd640(0000) GS:ffff888466b80000(0000) knlGS:0000000000000000
[ T1387] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ T1387] CR2: 0000000000000000 CR3: 000000014acf0003 CR4: 0000000000770ee0
[ T1387] PKRU: 55555554
[ T1387] Call Trace:
[ T1387] <TASK>
[ T1387] cl_stream_prepare+0x10a/0x120 [snd_sof_intel_hda_common 146addf995b9279ae7f509621078cccbe4f875e1]
[... snip ...]
[ T1387] </TASK> |
| In the Linux kernel, the following vulnerability has been resolved:
brcmfmac: pcie: Release firmwares in the brcmf_pcie_setup error path
This avoids leaking memory if brcmf_chip_get_raminfo fails. Note that
the CLM blob is released in the device remove path. |
| In the Linux kernel, the following vulnerability has been resolved:
driver core: Fix wait_for_device_probe() & deferred_probe_timeout interaction
Mounting NFS rootfs was timing out when deferred_probe_timeout was
non-zero [1]. This was because ip_auto_config() initcall times out
waiting for the network interfaces to show up when
deferred_probe_timeout was non-zero. While ip_auto_config() calls
wait_for_device_probe() to make sure any currently running deferred
probe work or asynchronous probe finishes, that wasn't sufficient to
account for devices being deferred until deferred_probe_timeout.
Commit 35a672363ab3 ("driver core: Ensure wait_for_device_probe() waits
until the deferred_probe_timeout fires") tried to fix that by making
sure wait_for_device_probe() waits for deferred_probe_timeout to expire
before returning.
However, if wait_for_device_probe() is called from the kernel_init()
context:
- Before deferred_probe_initcall() [2], it causes the boot process to
hang due to a deadlock.
- After deferred_probe_initcall() [3], it blocks kernel_init() from
continuing till deferred_probe_timeout expires and beats the point of
deferred_probe_timeout that's trying to wait for userspace to load
modules.
Neither of this is good. So revert the changes to
wait_for_device_probe().
[1] - https://lore.kernel.org/lkml/TYAPR01MB45443DF63B9EF29054F7C41FD8C60@TYAPR01MB4544.jpnprd01.prod.outlook.com/
[2] - https://lore.kernel.org/lkml/YowHNo4sBjr9ijZr@dev-arch.thelio-3990X/
[3] - https://lore.kernel.org/lkml/Yo3WvGnNk3LvLb7R@linutronix.de/ |
| In the Linux kernel, the following vulnerability has been resolved:
net: mdio: unexport __init-annotated mdio_bus_init()
EXPORT_SYMBOL and __init is a bad combination because the .init.text
section is freed up after the initialization. Hence, modules cannot
use symbols annotated __init. The access to a freed symbol may end up
with kernel panic.
modpost used to detect it, but it has been broken for a decade.
Recently, I fixed modpost so it started to warn it again, then this
showed up in linux-next builds.
There are two ways to fix it:
- Remove __init
- Remove EXPORT_SYMBOL
I chose the latter for this case because the only in-tree call-site,
drivers/net/phy/phy_device.c is never compiled as modular.
(CONFIG_PHYLIB is boolean) |
| In the Linux kernel, the following vulnerability has been resolved:
net: xfrm: unexport __init-annotated xfrm4_protocol_init()
EXPORT_SYMBOL and __init is a bad combination because the .init.text
section is freed up after the initialization. Hence, modules cannot
use symbols annotated __init. The access to a freed symbol may end up
with kernel panic.
modpost used to detect it, but it has been broken for a decade.
Recently, I fixed modpost so it started to warn it again, then this
showed up in linux-next builds.
There are two ways to fix it:
- Remove __init
- Remove EXPORT_SYMBOL
I chose the latter for this case because the only in-tree call-site,
net/ipv4/xfrm4_policy.c is never compiled as modular.
(CONFIG_XFRM is boolean) |
| In the Linux kernel, the following vulnerability has been resolved:
net: ipv6: unexport __init-annotated seg6_hmac_init()
EXPORT_SYMBOL and __init is a bad combination because the .init.text
section is freed up after the initialization. Hence, modules cannot
use symbols annotated __init. The access to a freed symbol may end up
with kernel panic.
modpost used to detect it, but it has been broken for a decade.
Recently, I fixed modpost so it started to warn it again, then this
showed up in linux-next builds.
There are two ways to fix it:
- Remove __init
- Remove EXPORT_SYMBOL
I chose the latter for this case because the caller (net/ipv6/seg6.c)
and the callee (net/ipv6/seg6_hmac.c) belong to the same module.
It seems an internal function call in ipv6.ko. |
| In the Linux kernel, the following vulnerability has been resolved:
tcp: fix tcp_mtup_probe_success vs wrong snd_cwnd
syzbot got a new report [1] finally pointing to a very old bug,
added in initial support for MTU probing.
tcp_mtu_probe() has checks about starting an MTU probe if
tcp_snd_cwnd(tp) >= 11.
But nothing prevents tcp_snd_cwnd(tp) to be reduced later
and before the MTU probe succeeds.
This bug would lead to potential zero-divides.
Debugging added in commit 40570375356c ("tcp: add accessors
to read/set tp->snd_cwnd") has paid off :)
While we are at it, address potential overflows in this code.
[1]
WARNING: CPU: 1 PID: 14132 at include/net/tcp.h:1219 tcp_mtup_probe_success+0x366/0x570 net/ipv4/tcp_input.c:2712
Modules linked in:
CPU: 1 PID: 14132 Comm: syz-executor.2 Not tainted 5.18.0-syzkaller-07857-gbabf0bb978e3 #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011
RIP: 0010:tcp_snd_cwnd_set include/net/tcp.h:1219 [inline]
RIP: 0010:tcp_mtup_probe_success+0x366/0x570 net/ipv4/tcp_input.c:2712
Code: 74 08 48 89 ef e8 da 80 17 f9 48 8b 45 00 65 48 ff 80 80 03 00 00 48 83 c4 30 5b 41 5c 41 5d 41 5e 41 5f 5d c3 e8 aa b0 c5 f8 <0f> 0b e9 16 fe ff ff 48 8b 4c 24 08 80 e1 07 38 c1 0f 8c c7 fc ff
RSP: 0018:ffffc900079e70f8 EFLAGS: 00010287
RAX: ffffffff88c0f7f6 RBX: ffff8880756e7a80 RCX: 0000000000040000
RDX: ffffc9000c6c4000 RSI: 0000000000031f9e RDI: 0000000000031f9f
RBP: 0000000000000000 R08: ffffffff88c0f606 R09: ffffc900079e7520
R10: ffffed101011226d R11: 1ffff1101011226c R12: 1ffff1100eadcf50
R13: ffff8880756e72c0 R14: 1ffff1100eadcf89 R15: dffffc0000000000
FS: 00007f643236e700(0000) GS:ffff8880b9b00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f1ab3f1e2a0 CR3: 0000000064fe7000 CR4: 00000000003506e0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
<TASK>
tcp_clean_rtx_queue+0x223a/0x2da0 net/ipv4/tcp_input.c:3356
tcp_ack+0x1962/0x3c90 net/ipv4/tcp_input.c:3861
tcp_rcv_established+0x7c8/0x1ac0 net/ipv4/tcp_input.c:5973
tcp_v6_do_rcv+0x57b/0x1210 net/ipv6/tcp_ipv6.c:1476
sk_backlog_rcv include/net/sock.h:1061 [inline]
__release_sock+0x1d8/0x4c0 net/core/sock.c:2849
release_sock+0x5d/0x1c0 net/core/sock.c:3404
sk_stream_wait_memory+0x700/0xdc0 net/core/stream.c:145
tcp_sendmsg_locked+0x111d/0x3fc0 net/ipv4/tcp.c:1410
tcp_sendmsg+0x2c/0x40 net/ipv4/tcp.c:1448
sock_sendmsg_nosec net/socket.c:714 [inline]
sock_sendmsg net/socket.c:734 [inline]
__sys_sendto+0x439/0x5c0 net/socket.c:2119
__do_sys_sendto net/socket.c:2131 [inline]
__se_sys_sendto net/socket.c:2127 [inline]
__x64_sys_sendto+0xda/0xf0 net/socket.c:2127
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x2b/0x70 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x46/0xb0
RIP: 0033:0x7f6431289109
Code: ff ff c3 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 40 00 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 c7 c1 b8 ff ff ff f7 d8 64 89 01 48
RSP: 002b:00007f643236e168 EFLAGS: 00000246 ORIG_RAX: 000000000000002c
RAX: ffffffffffffffda RBX: 00007f643139c100 RCX: 00007f6431289109
RDX: 00000000d0d0c2ac RSI: 0000000020000080 RDI: 000000000000000a
RBP: 00007f64312e308d R08: 0000000000000000 R09: 0000000000000000
R10: 0000000000000001 R11: 0000000000000246 R12: 0000000000000000
R13: 00007fff372533af R14: 00007f643236e300 R15: 0000000000022000 |
| In the Linux kernel, the following vulnerability has been resolved:
ext4: fix bug_on in __es_tree_search
Hulk Robot reported a BUG_ON:
==================================================================
kernel BUG at fs/ext4/extents_status.c:199!
[...]
RIP: 0010:ext4_es_end fs/ext4/extents_status.c:199 [inline]
RIP: 0010:__es_tree_search+0x1e0/0x260 fs/ext4/extents_status.c:217
[...]
Call Trace:
ext4_es_cache_extent+0x109/0x340 fs/ext4/extents_status.c:766
ext4_cache_extents+0x239/0x2e0 fs/ext4/extents.c:561
ext4_find_extent+0x6b7/0xa20 fs/ext4/extents.c:964
ext4_ext_map_blocks+0x16b/0x4b70 fs/ext4/extents.c:4384
ext4_map_blocks+0xe26/0x19f0 fs/ext4/inode.c:567
ext4_getblk+0x320/0x4c0 fs/ext4/inode.c:980
ext4_bread+0x2d/0x170 fs/ext4/inode.c:1031
ext4_quota_read+0x248/0x320 fs/ext4/super.c:6257
v2_read_header+0x78/0x110 fs/quota/quota_v2.c:63
v2_check_quota_file+0x76/0x230 fs/quota/quota_v2.c:82
vfs_load_quota_inode+0x5d1/0x1530 fs/quota/dquot.c:2368
dquot_enable+0x28a/0x330 fs/quota/dquot.c:2490
ext4_quota_enable fs/ext4/super.c:6137 [inline]
ext4_enable_quotas+0x5d7/0x960 fs/ext4/super.c:6163
ext4_fill_super+0xa7c9/0xdc00 fs/ext4/super.c:4754
mount_bdev+0x2e9/0x3b0 fs/super.c:1158
mount_fs+0x4b/0x1e4 fs/super.c:1261
[...]
==================================================================
Above issue may happen as follows:
-------------------------------------
ext4_fill_super
ext4_enable_quotas
ext4_quota_enable
ext4_iget
__ext4_iget
ext4_ext_check_inode
ext4_ext_check
__ext4_ext_check
ext4_valid_extent_entries
Check for overlapping extents does't take effect
dquot_enable
vfs_load_quota_inode
v2_check_quota_file
v2_read_header
ext4_quota_read
ext4_bread
ext4_getblk
ext4_map_blocks
ext4_ext_map_blocks
ext4_find_extent
ext4_cache_extents
ext4_es_cache_extent
ext4_es_cache_extent
__es_tree_search
ext4_es_end
BUG_ON(es->es_lblk + es->es_len < es->es_lblk)
The error ext4 extents is as follows:
0af3 0300 0400 0000 00000000 extent_header
00000000 0100 0000 12000000 extent1
00000000 0100 0000 18000000 extent2
02000000 0400 0000 14000000 extent3
In the ext4_valid_extent_entries function,
if prev is 0, no error is returned even if lblock<=prev.
This was intended to skip the check on the first extent, but
in the error image above, prev=0+1-1=0 when checking the second extent,
so even though lblock<=prev, the function does not return an error.
As a result, bug_ON occurs in __es_tree_search and the system panics.
To solve this problem, we only need to check that:
1. The lblock of the first extent is not less than 0.
2. The lblock of the next extent is not less than
the next block of the previous extent.
The same applies to extent_idx. |
| In the Linux kernel, the following vulnerability has been resolved:
dlm: fix plock invalid read
This patch fixes an invalid read showed by KASAN. A unlock will allocate a
"struct plock_op" and a followed send_op() will append it to a global
send_list data structure. In some cases a followed dev_read() moves it
to recv_list and dev_write() will cast it to "struct plock_xop" and access
fields which are only available in those structures. At this point an
invalid read happens by accessing those fields.
To fix this issue the "callback" field is moved to "struct plock_op" to
indicate that a cast to "plock_xop" is allowed and does the additional
"plock_xop" handling if set.
Example of the KASAN output which showed the invalid read:
[ 2064.296453] ==================================================================
[ 2064.304852] BUG: KASAN: slab-out-of-bounds in dev_write+0x52b/0x5a0 [dlm]
[ 2064.306491] Read of size 8 at addr ffff88800ef227d8 by task dlm_controld/7484
[ 2064.308168]
[ 2064.308575] CPU: 0 PID: 7484 Comm: dlm_controld Kdump: loaded Not tainted 5.14.0+ #9
[ 2064.310292] Hardware name: Red Hat KVM, BIOS 0.5.1 01/01/2011
[ 2064.311618] Call Trace:
[ 2064.312218] dump_stack_lvl+0x56/0x7b
[ 2064.313150] print_address_description.constprop.8+0x21/0x150
[ 2064.314578] ? dev_write+0x52b/0x5a0 [dlm]
[ 2064.315610] ? dev_write+0x52b/0x5a0 [dlm]
[ 2064.316595] kasan_report.cold.14+0x7f/0x11b
[ 2064.317674] ? dev_write+0x52b/0x5a0 [dlm]
[ 2064.318687] dev_write+0x52b/0x5a0 [dlm]
[ 2064.319629] ? dev_read+0x4a0/0x4a0 [dlm]
[ 2064.320713] ? bpf_lsm_kernfs_init_security+0x10/0x10
[ 2064.321926] vfs_write+0x17e/0x930
[ 2064.322769] ? __fget_light+0x1aa/0x220
[ 2064.323753] ksys_write+0xf1/0x1c0
[ 2064.324548] ? __ia32_sys_read+0xb0/0xb0
[ 2064.325464] do_syscall_64+0x3a/0x80
[ 2064.326387] entry_SYSCALL_64_after_hwframe+0x44/0xae
[ 2064.327606] RIP: 0033:0x7f807e4ba96f
[ 2064.328470] Code: 89 54 24 18 48 89 74 24 10 89 7c 24 08 e8 39 87 f8 ff 48 8b 54 24 18 48 8b 74 24 10 41 89 c0 8b 7c 24 08 b8 01 00 00 00 0f 05 <48> 3d 00 f0 ff ff 77 31 44 89 c7 48 89 44 24 08 e8 7c 87 f8 ff 48
[ 2064.332902] RSP: 002b:00007ffd50cfe6e0 EFLAGS: 00000293 ORIG_RAX: 0000000000000001
[ 2064.334658] RAX: ffffffffffffffda RBX: 000055cc3886eb30 RCX: 00007f807e4ba96f
[ 2064.336275] RDX: 0000000000000040 RSI: 00007ffd50cfe7e0 RDI: 0000000000000010
[ 2064.337980] RBP: 00007ffd50cfe7e0 R08: 0000000000000000 R09: 0000000000000001
[ 2064.339560] R10: 000055cc3886eb30 R11: 0000000000000293 R12: 000055cc3886eb80
[ 2064.341237] R13: 000055cc3886eb00 R14: 000055cc3886f590 R15: 0000000000000001
[ 2064.342857]
[ 2064.343226] Allocated by task 12438:
[ 2064.344057] kasan_save_stack+0x1c/0x40
[ 2064.345079] __kasan_kmalloc+0x84/0xa0
[ 2064.345933] kmem_cache_alloc_trace+0x13b/0x220
[ 2064.346953] dlm_posix_unlock+0xec/0x720 [dlm]
[ 2064.348811] do_lock_file_wait.part.32+0xca/0x1d0
[ 2064.351070] fcntl_setlk+0x281/0xbc0
[ 2064.352879] do_fcntl+0x5e4/0xfe0
[ 2064.354657] __x64_sys_fcntl+0x11f/0x170
[ 2064.356550] do_syscall_64+0x3a/0x80
[ 2064.358259] entry_SYSCALL_64_after_hwframe+0x44/0xae
[ 2064.360745]
[ 2064.361511] Last potentially related work creation:
[ 2064.363957] kasan_save_stack+0x1c/0x40
[ 2064.365811] __kasan_record_aux_stack+0xaf/0xc0
[ 2064.368100] call_rcu+0x11b/0xf70
[ 2064.369785] dlm_process_incoming_buffer+0x47d/0xfd0 [dlm]
[ 2064.372404] receive_from_sock+0x290/0x770 [dlm]
[ 2064.374607] process_recv_sockets+0x32/0x40 [dlm]
[ 2064.377290] process_one_work+0x9a8/0x16e0
[ 2064.379357] worker_thread+0x87/0xbf0
[ 2064.381188] kthread+0x3ac/0x490
[ 2064.383460] ret_from_fork+0x22/0x30
[ 2064.385588]
[ 2064.386518] Second to last potentially related work creation:
[ 2064.389219] kasan_save_stack+0x1c/0x40
[ 2064.391043] __kasan_record_aux_stack+0xaf/0xc0
[ 2064.393303] call_rcu+0x11b/0xf70
[ 2064.394885] dlm_process_incoming_buffer+0x47d/0xfd0 [dlm]
[ 2064.397694] receive_from_sock+0x290/0x770
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
mm/page_owner: use strscpy() instead of strlcpy()
current->comm[] is not a string (no guarantee for a zero byte in it).
strlcpy(s1, s2, l) is calling strlen(s2), potentially
causing out-of-bound access, as reported by syzbot:
detected buffer overflow in __fortify_strlen
------------[ cut here ]------------
kernel BUG at lib/string_helpers.c:980!
invalid opcode: 0000 [#1] PREEMPT SMP KASAN
CPU: 0 PID: 4087 Comm: dhcpcd-run-hooks Not tainted 5.18.0-rc3-syzkaller-01537-g20b87e7c29df #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011
RIP: 0010:fortify_panic+0x18/0x1a lib/string_helpers.c:980
Code: 8c e8 c5 ba e1 fa e9 23 0f bf fa e8 0b 5d 8c f8 eb db 55 48 89 fd e8 e0 49 40 f8 48 89 ee 48 c7 c7 80 f5 26 8a e8 99 09 f1 ff <0f> 0b e8 ca 49 40 f8 48 8b 54 24 18 4c 89 f1 48 c7 c7 00 00 27 8a
RSP: 0018:ffffc900000074a8 EFLAGS: 00010286
RAX: 000000000000002c RBX: ffff88801226b728 RCX: 0000000000000000
RDX: ffff8880198e0000 RSI: ffffffff81600458 RDI: fffff52000000e87
RBP: ffffffff89da2aa0 R08: 000000000000002c R09: 0000000000000000
R10: ffffffff815fae2e R11: 0000000000000000 R12: ffff88801226b700
R13: ffff8880198e0830 R14: 0000000000000000 R15: 0000000000000000
FS: 0000000000000000(0000) GS:ffff8880b9c00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f5876ad6ff8 CR3: 000000001a48c000 CR4: 00000000003506f0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000600
Call Trace:
<IRQ>
__fortify_strlen include/linux/fortify-string.h:128 [inline]
strlcpy include/linux/fortify-string.h:143 [inline]
__set_page_owner_handle+0x2b1/0x3e0 mm/page_owner.c:171
__set_page_owner+0x3e/0x50 mm/page_owner.c:190
prep_new_page mm/page_alloc.c:2441 [inline]
get_page_from_freelist+0xba2/0x3e00 mm/page_alloc.c:4182
__alloc_pages+0x1b2/0x500 mm/page_alloc.c:5408
alloc_pages+0x1aa/0x310 mm/mempolicy.c:2272
alloc_slab_page mm/slub.c:1799 [inline]
allocate_slab+0x26c/0x3c0 mm/slub.c:1944
new_slab mm/slub.c:2004 [inline]
___slab_alloc+0x8df/0xf20 mm/slub.c:3005
__slab_alloc.constprop.0+0x4d/0xa0 mm/slub.c:3092
slab_alloc_node mm/slub.c:3183 [inline]
slab_alloc mm/slub.c:3225 [inline]
__kmem_cache_alloc_lru mm/slub.c:3232 [inline]
kmem_cache_alloc+0x360/0x3b0 mm/slub.c:3242
dst_alloc+0x146/0x1f0 net/core/dst.c:92 |
| In the Linux kernel, the following vulnerability has been resolved:
net/sched: fix lockdep splat in qdisc_tree_reduce_backlog()
qdisc_tree_reduce_backlog() is called with the qdisc lock held,
not RTNL.
We must use qdisc_lookup_rcu() instead of qdisc_lookup()
syzbot reported:
WARNING: suspicious RCU usage
6.1.74-syzkaller #0 Not tainted
-----------------------------
net/sched/sch_api.c:305 suspicious rcu_dereference_protected() usage!
other info that might help us debug this:
rcu_scheduler_active = 2, debug_locks = 1
3 locks held by udevd/1142:
#0: ffffffff87c729a0 (rcu_read_lock){....}-{1:2}, at: rcu_lock_acquire include/linux/rcupdate.h:306 [inline]
#0: ffffffff87c729a0 (rcu_read_lock){....}-{1:2}, at: rcu_read_lock include/linux/rcupdate.h:747 [inline]
#0: ffffffff87c729a0 (rcu_read_lock){....}-{1:2}, at: net_tx_action+0x64a/0x970 net/core/dev.c:5282
#1: ffff888171861108 (&sch->q.lock){+.-.}-{2:2}, at: spin_lock include/linux/spinlock.h:350 [inline]
#1: ffff888171861108 (&sch->q.lock){+.-.}-{2:2}, at: net_tx_action+0x754/0x970 net/core/dev.c:5297
#2: ffffffff87c729a0 (rcu_read_lock){....}-{1:2}, at: rcu_lock_acquire include/linux/rcupdate.h:306 [inline]
#2: ffffffff87c729a0 (rcu_read_lock){....}-{1:2}, at: rcu_read_lock include/linux/rcupdate.h:747 [inline]
#2: ffffffff87c729a0 (rcu_read_lock){....}-{1:2}, at: qdisc_tree_reduce_backlog+0x84/0x580 net/sched/sch_api.c:792
stack backtrace:
CPU: 1 PID: 1142 Comm: udevd Not tainted 6.1.74-syzkaller #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/25/2024
Call Trace:
<TASK>
[<ffffffff85b85f14>] __dump_stack lib/dump_stack.c:88 [inline]
[<ffffffff85b85f14>] dump_stack_lvl+0x1b1/0x28f lib/dump_stack.c:106
[<ffffffff85b86007>] dump_stack+0x15/0x1e lib/dump_stack.c:113
[<ffffffff81802299>] lockdep_rcu_suspicious+0x1b9/0x260 kernel/locking/lockdep.c:6592
[<ffffffff84f0054c>] qdisc_lookup+0xac/0x6f0 net/sched/sch_api.c:305
[<ffffffff84f037c3>] qdisc_tree_reduce_backlog+0x243/0x580 net/sched/sch_api.c:811
[<ffffffff84f5b78c>] pfifo_tail_enqueue+0x32c/0x4b0 net/sched/sch_fifo.c:51
[<ffffffff84fbcf63>] qdisc_enqueue include/net/sch_generic.h:833 [inline]
[<ffffffff84fbcf63>] netem_dequeue+0xeb3/0x15d0 net/sched/sch_netem.c:723
[<ffffffff84eecab9>] dequeue_skb net/sched/sch_generic.c:292 [inline]
[<ffffffff84eecab9>] qdisc_restart net/sched/sch_generic.c:397 [inline]
[<ffffffff84eecab9>] __qdisc_run+0x249/0x1e60 net/sched/sch_generic.c:415
[<ffffffff84d7aa96>] qdisc_run+0xd6/0x260 include/net/pkt_sched.h:125
[<ffffffff84d85d29>] net_tx_action+0x7c9/0x970 net/core/dev.c:5313
[<ffffffff85e002bd>] __do_softirq+0x2bd/0x9bd kernel/softirq.c:616
[<ffffffff81568bca>] invoke_softirq kernel/softirq.c:447 [inline]
[<ffffffff81568bca>] __irq_exit_rcu+0xca/0x230 kernel/softirq.c:700
[<ffffffff81568ae9>] irq_exit_rcu+0x9/0x20 kernel/softirq.c:712
[<ffffffff85b89f52>] sysvec_apic_timer_interrupt+0x42/0x90 arch/x86/kernel/apic/apic.c:1107
[<ffffffff85c00ccb>] asm_sysvec_apic_timer_interrupt+0x1b/0x20 arch/x86/include/asm/idtentry.h:656 |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: mac80211: fix potential sta-link leak
When a station is allocated, links are added but not
set to valid yet (e.g. during connection to an AP MLD),
we might remove the station without ever marking links
valid, and leak them. Fix that. |
| In the Linux kernel, the following vulnerability has been resolved:
swiotlb: Fix double-allocation of slots due to broken alignment handling
Commit bbb73a103fbb ("swiotlb: fix a braino in the alignment check fix"),
which was a fix for commit 0eee5ae10256 ("swiotlb: fix slot alignment
checks"), causes a functional regression with vsock in a virtual machine
using bouncing via a restricted DMA SWIOTLB pool.
When virtio allocates the virtqueues for the vsock device using
dma_alloc_coherent(), the SWIOTLB search can return page-unaligned
allocations if 'area->index' was left unaligned by a previous allocation
from the buffer:
# Final address in brackets is the SWIOTLB address returned to the caller
| virtio-pci 0000:00:07.0: orig_addr 0x0 alloc_size 0x2000, iotlb_align_mask 0x800 stride 0x2: got slot 1645-1649/7168 (0x98326800)
| virtio-pci 0000:00:07.0: orig_addr 0x0 alloc_size 0x2000, iotlb_align_mask 0x800 stride 0x2: got slot 1649-1653/7168 (0x98328800)
| virtio-pci 0000:00:07.0: orig_addr 0x0 alloc_size 0x2000, iotlb_align_mask 0x800 stride 0x2: got slot 1653-1657/7168 (0x9832a800)
This ends badly (typically buffer corruption and/or a hang) because
swiotlb_alloc() is expecting a page-aligned allocation and so blindly
returns a pointer to the 'struct page' corresponding to the allocation,
therefore double-allocating the first half (2KiB slot) of the 4KiB page.
Fix the problem by treating the allocation alignment separately to any
additional alignment requirements from the device, using the maximum
of the two as the stride to search the buffer slots and taking care
to ensure a minimum of page-alignment for buffers larger than a page.
This also resolves swiotlb allocation failures occuring due to the
inclusion of ~PAGE_MASK in 'iotlb_align_mask' for large allocations and
resulting in alignment requirements exceeding swiotlb_max_mapping_size(). |
| In the Linux kernel, the following vulnerability has been resolved:
md/dm-raid: don't call md_reap_sync_thread() directly
Currently md_reap_sync_thread() is called from raid_message() directly
without holding 'reconfig_mutex', this is definitely unsafe because
md_reap_sync_thread() can change many fields that is protected by
'reconfig_mutex'.
However, hold 'reconfig_mutex' here is still problematic because this
will cause deadlock, for example, commit 130443d60b1b ("md: refactor
idle/frozen_sync_thread() to fix deadlock").
Fix this problem by using stop_sync_thread() to unregister sync_thread,
like md/raid did. |
| In the Linux kernel, the following vulnerability has been resolved:
x86/fpu: Keep xfd_state in sync with MSR_IA32_XFD
Commit 672365477ae8 ("x86/fpu: Update XFD state where required") and
commit 8bf26758ca96 ("x86/fpu: Add XFD state to fpstate") introduced a
per CPU variable xfd_state to keep the MSR_IA32_XFD value cached, in
order to avoid unnecessary writes to the MSR.
On CPU hotplug MSR_IA32_XFD is reset to the init_fpstate.xfd, which
wipes out any stale state. But the per CPU cached xfd value is not
reset, which brings them out of sync.
As a consequence a subsequent xfd_update_state() might fail to update
the MSR which in turn can result in XRSTOR raising a #NM in kernel
space, which crashes the kernel.
To fix this, introduce xfd_set_state() to write xfd_state together
with MSR_IA32_XFD, and use it in all places that set MSR_IA32_XFD. |
| In the Linux kernel, the following vulnerability has been resolved:
efi: fix panic in kdump kernel
Check if get_next_variable() is actually valid pointer before
calling it. In kdump kernel this method is set to NULL that causes
panic during the kexec-ed kernel boot.
Tested with QEMU and OVMF firmware. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amdgpu: Fix the warning division or modulo by zero
Checks the partition mode and returns an error for an invalid mode. |