| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
pmdomain: imx8mp-blk-ctrl: imx8mp_blk: Add fdcc clock to hdmimix domain
According to i.MX8MP RM and HDMI ADD, the fdcc clock is part of
hdmi rx verification IP that should not enable for HDMI TX.
But actually if the clock is disabled before HDMI/LCDIF probe,
LCDIF will not get pixel clock from HDMI PHY and print the error
logs:
[CRTC:39:crtc-2] vblank wait timed out
WARNING: CPU: 2 PID: 9 at drivers/gpu/drm/drm_atomic_helper.c:1634 drm_atomic_helper_wait_for_vblanks.part.0+0x23c/0x260
Add fdcc clock to LCDIF and HDMI TX power domains to fix the issue. |
| In the Linux kernel, the following vulnerability has been resolved:
tls: get psock ref after taking rxlock to avoid leak
At the start of tls_sw_recvmsg, we take a reference on the psock, and
then call tls_rx_reader_lock. If that fails, we return directly
without releasing the reference.
Instead of adding a new label, just take the reference after locking
has succeeded, since we don't need it before. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: iwlwifi: mvm: pick the version of SESSION_PROTECTION_NOTIF
When we want to know whether we should look for the mac_id or the
link_id in struct iwl_mvm_session_prot_notif, we should look at the
version of SESSION_PROTECTION_NOTIF.
This causes WARNINGs:
WARNING: CPU: 0 PID: 11403 at drivers/net/wireless/intel/iwlwifi/mvm/time-event.c:959 iwl_mvm_rx_session_protect_notif+0x333/0x340 [iwlmvm]
RIP: 0010:iwl_mvm_rx_session_protect_notif+0x333/0x340 [iwlmvm]
Code: 00 49 c7 84 24 48 07 00 00 00 00 00 00 41 c6 84 24 78 07 00 00 ff 4c 89 f7 e8 e9 71 54 d9 e9 7d fd ff ff 0f 0b e9 23 fe ff ff <0f> 0b e9 1c fe ff ff 66 0f 1f 44 00 00 90 90 90 90 90 90 90 90 90
RSP: 0018:ffffb4bb00003d40 EFLAGS: 00010202
RAX: 0000000000000000 RBX: ffff9ae63a361000 RCX: ffff9ae4a98b60d4
RDX: ffff9ae4588499c0 RSI: 0000000000000305 RDI: ffff9ae4a98b6358
RBP: ffffb4bb00003d68 R08: 0000000000000003 R09: 0000000000000010
R10: ffffb4bb00003d00 R11: 000000000000000f R12: ffff9ae441399050
R13: ffff9ae4761329e8 R14: 0000000000000001 R15: 0000000000000000
FS: 0000000000000000(0000) GS:ffff9ae7af400000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 000055fb75680018 CR3: 00000003dae32006 CR4: 0000000000f70ef0
PKRU: 55555554
Call Trace:
<IRQ>
? show_regs+0x69/0x80
? __warn+0x8d/0x150
? iwl_mvm_rx_session_protect_notif+0x333/0x340 [iwlmvm]
? report_bug+0x196/0x1c0
? handle_bug+0x45/0x80
? exc_invalid_op+0x1c/0xb0
? asm_exc_invalid_op+0x1f/0x30
? iwl_mvm_rx_session_protect_notif+0x333/0x340 [iwlmvm]
iwl_mvm_rx_common+0x115/0x340 [iwlmvm]
iwl_mvm_rx_mq+0xa6/0x100 [iwlmvm]
iwl_pcie_rx_handle+0x263/0xa10 [iwlwifi]
iwl_pcie_napi_poll_msix+0x32/0xd0 [iwlwifi] |
| In the Linux kernel, the following vulnerability has been resolved:
usb: typec: ucsi: Limit read size on v1.2
Between UCSI 1.2 and UCSI 2.0, the size of the MESSAGE_IN region was
increased from 16 to 256. In order to avoid overflowing reads for older
systems, add a mechanism to use the read UCSI version to truncate read
sizes on UCSI v1.2. |
| In the Linux kernel, the following vulnerability has been resolved:
drm: Check output polling initialized before disabling
In drm_kms_helper_poll_disable() check if output polling
support is initialized before disabling polling. If not flag
this as a warning.
Additionally in drm_mode_config_helper_suspend() and
drm_mode_config_helper_resume() calls, that re the callers of these
functions, avoid invoking them if polling is not initialized.
For drivers like hyperv-drm, that do not initialize connector
polling, if suspend is called without this check, it leads to
suspend failure with following stack
[ 770.719392] Freezing remaining freezable tasks ... (elapsed 0.001 seconds) done.
[ 770.720592] printk: Suspending console(s) (use no_console_suspend to debug)
[ 770.948823] ------------[ cut here ]------------
[ 770.948824] WARNING: CPU: 1 PID: 17197 at kernel/workqueue.c:3162 __flush_work.isra.0+0x212/0x230
[ 770.948831] Modules linked in: rfkill nft_counter xt_conntrack xt_owner udf nft_compat crc_itu_t nft_fib_inet nft_fib_ipv4 nft_fib_ipv6 nft_fib nft_reject_inet nf_reject_ipv4 nf_reject_ipv6 nft_reject nft_ct nft_chain_nat nf_nat nf_conntrack nf_defrag_ipv6 nf_defrag_ipv4 ip_set nf_tables nfnetlink vfat fat mlx5_ib ib_uverbs ib_core mlx5_core intel_rapl_msr intel_rapl_common kvm_amd ccp mlxfw kvm psample hyperv_drm tls drm_shmem_helper drm_kms_helper irqbypass pcspkr syscopyarea sysfillrect sysimgblt hv_balloon hv_utils joydev drm fuse xfs libcrc32c pci_hyperv pci_hyperv_intf sr_mod sd_mod cdrom t10_pi sg hv_storvsc scsi_transport_fc hv_netvsc serio_raw hyperv_keyboard hid_hyperv crct10dif_pclmul crc32_pclmul crc32c_intel hv_vmbus ghash_clmulni_intel dm_mirror dm_region_hash dm_log dm_mod
[ 770.948863] CPU: 1 PID: 17197 Comm: systemd-sleep Not tainted 5.14.0-362.2.1.el9_3.x86_64 #1
[ 770.948865] Hardware name: Microsoft Corporation Virtual Machine/Virtual Machine, BIOS Hyper-V UEFI Release v4.1 05/09/2022
[ 770.948866] RIP: 0010:__flush_work.isra.0+0x212/0x230
[ 770.948869] Code: 8b 4d 00 4c 8b 45 08 89 ca 48 c1 e9 04 83 e2 08 83 e1 0f 83 ca 02 89 c8 48 0f ba 6d 00 03 e9 25 ff ff ff 0f 0b e9 4e ff ff ff <0f> 0b 45 31 ed e9 44 ff ff ff e8 8f 89 b2 00 66 66 2e 0f 1f 84 00
[ 770.948870] RSP: 0018:ffffaf4ac213fb10 EFLAGS: 00010246
[ 770.948871] RAX: 0000000000000000 RBX: 0000000000000000 RCX: ffffffff8c992857
[ 770.948872] RDX: 0000000000000001 RSI: 0000000000000001 RDI: ffff9aad82b00330
[ 770.948873] RBP: ffff9aad82b00330 R08: 0000000000000000 R09: ffff9aad87ee3d10
[ 770.948874] R10: 0000000000000200 R11: 0000000000000000 R12: ffff9aad82b00330
[ 770.948874] R13: 0000000000000001 R14: 0000000000000000 R15: 0000000000000001
[ 770.948875] FS: 00007ff1b2f6bb40(0000) GS:ffff9aaf37d00000(0000) knlGS:0000000000000000
[ 770.948878] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 770.948878] CR2: 0000555f345cb666 CR3: 00000001462dc005 CR4: 0000000000370ee0
[ 770.948879] Call Trace:
[ 770.948880] <TASK>
[ 770.948881] ? show_trace_log_lvl+0x1c4/0x2df
[ 770.948884] ? show_trace_log_lvl+0x1c4/0x2df
[ 770.948886] ? __cancel_work_timer+0x103/0x190
[ 770.948887] ? __flush_work.isra.0+0x212/0x230
[ 770.948889] ? __warn+0x81/0x110
[ 770.948891] ? __flush_work.isra.0+0x212/0x230
[ 770.948892] ? report_bug+0x10a/0x140
[ 770.948895] ? handle_bug+0x3c/0x70
[ 770.948898] ? exc_invalid_op+0x14/0x70
[ 770.948899] ? asm_exc_invalid_op+0x16/0x20
[ 770.948903] ? __flush_work.isra.0+0x212/0x230
[ 770.948905] __cancel_work_timer+0x103/0x190
[ 770.948907] ? _raw_spin_unlock_irqrestore+0xa/0x30
[ 770.948910] drm_kms_helper_poll_disable+0x1e/0x40 [drm_kms_helper]
[ 770.948923] drm_mode_config_helper_suspend+0x1c/0x80 [drm_kms_helper]
[ 770.948933] ? __pfx_vmbus_suspend+0x10/0x10 [hv_vmbus]
[ 770.948942] hyperv_vmbus_suspend+0x17/0x40 [hyperv_drm]
[ 770.948944] ? __pfx_vmbus_suspend+0x10/0x10 [hv_vmbus]
[ 770.948951] dpm_run_callback+0x4c/0x140
[ 770.948954] __device_suspend_noir
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amdgpu: Skip do PCI error slot reset during RAS recovery
Why:
The PCI error slot reset maybe triggered after inject ue to UMC multi times, this
caused system hang.
[ 557.371857] amdgpu 0000:af:00.0: amdgpu: GPU reset succeeded, trying to resume
[ 557.373718] [drm] PCIE GART of 512M enabled.
[ 557.373722] [drm] PTB located at 0x0000031FED700000
[ 557.373788] [drm] VRAM is lost due to GPU reset!
[ 557.373789] [drm] PSP is resuming...
[ 557.547012] mlx5_core 0000:55:00.0: mlx5_pci_err_detected Device state = 1 pci_status: 0. Exit, result = 3, need reset
[ 557.547067] [drm] PCI error: detected callback, state(1)!!
[ 557.547069] [drm] No support for XGMI hive yet...
[ 557.548125] mlx5_core 0000:55:00.0: mlx5_pci_slot_reset Device state = 1 pci_status: 0. Enter
[ 557.607763] mlx5_core 0000:55:00.0: wait vital counter value 0x16b5b after 1 iterations
[ 557.607777] mlx5_core 0000:55:00.0: mlx5_pci_slot_reset Device state = 1 pci_status: 1. Exit, err = 0, result = 5, recovered
[ 557.610492] [drm] PCI error: slot reset callback!!
...
[ 560.689382] amdgpu 0000:3f:00.0: amdgpu: GPU reset(2) succeeded!
[ 560.689546] amdgpu 0000:5a:00.0: amdgpu: GPU reset(2) succeeded!
[ 560.689562] general protection fault, probably for non-canonical address 0x5f080b54534f611f: 0000 [#1] SMP NOPTI
[ 560.701008] CPU: 16 PID: 2361 Comm: kworker/u448:9 Tainted: G OE 5.15.0-91-generic #101-Ubuntu
[ 560.712057] Hardware name: Microsoft C278A/C278A, BIOS C2789.5.BS.1C11.AG.1 11/08/2023
[ 560.720959] Workqueue: amdgpu-reset-hive amdgpu_ras_do_recovery [amdgpu]
[ 560.728887] RIP: 0010:amdgpu_device_gpu_recover.cold+0xbf1/0xcf5 [amdgpu]
[ 560.736891] Code: ff 41 89 c6 e9 1b ff ff ff 44 0f b6 45 b0 e9 4f ff ff ff be 01 00 00 00 4c 89 e7 e8 76 c9 8b ff 44 0f b6 45 b0 e9 3c fd ff ff <48> 83 ba 18 02 00 00 00 0f 84 6a f8 ff ff 48 8d 7a 78 be 01 00 00
[ 560.757967] RSP: 0018:ffa0000032e53d80 EFLAGS: 00010202
[ 560.763848] RAX: ffa00000001dfd10 RBX: ffa0000000197090 RCX: ffa0000032e53db0
[ 560.771856] RDX: 5f080b54534f5f07 RSI: 0000000000000000 RDI: ff11000128100010
[ 560.779867] RBP: ffa0000032e53df0 R08: 0000000000000000 R09: ffffffffffe77f08
[ 560.787879] R10: 0000000000ffff0a R11: 0000000000000001 R12: 0000000000000000
[ 560.795889] R13: ffa0000032e53e00 R14: 0000000000000000 R15: 0000000000000000
[ 560.803889] FS: 0000000000000000(0000) GS:ff11007e7e800000(0000) knlGS:0000000000000000
[ 560.812973] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 560.819422] CR2: 000055a04c118e68 CR3: 0000000007410005 CR4: 0000000000771ee0
[ 560.827433] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[ 560.835433] DR3: 0000000000000000 DR6: 00000000fffe07f0 DR7: 0000000000000400
[ 560.843444] PKRU: 55555554
[ 560.846480] Call Trace:
[ 560.849225] <TASK>
[ 560.851580] ? show_trace_log_lvl+0x1d6/0x2ea
[ 560.856488] ? show_trace_log_lvl+0x1d6/0x2ea
[ 560.861379] ? amdgpu_ras_do_recovery+0x1b2/0x210 [amdgpu]
[ 560.867778] ? show_regs.part.0+0x23/0x29
[ 560.872293] ? __die_body.cold+0x8/0xd
[ 560.876502] ? die_addr+0x3e/0x60
[ 560.880238] ? exc_general_protection+0x1c5/0x410
[ 560.885532] ? asm_exc_general_protection+0x27/0x30
[ 560.891025] ? amdgpu_device_gpu_recover.cold+0xbf1/0xcf5 [amdgpu]
[ 560.898323] amdgpu_ras_do_recovery+0x1b2/0x210 [amdgpu]
[ 560.904520] process_one_work+0x228/0x3d0
How:
In RAS recovery, mode-1 reset is issued from RAS fatal error handling and expected
all the nodes in a hive to be reset. no need to issue another mode-1 during this procedure. |
| In the Linux kernel, the following vulnerability has been resolved:
dpll: fix dpll_pin_on_pin_register() for multiple parent pins
In scenario where pin is registered with multiple parent pins via
dpll_pin_on_pin_register(..), all belonging to the same dpll device.
A second call to dpll_pin_on_pin_unregister(..) would cause a call trace,
as it tries to use already released registration resources (due to fix
introduced in b446631f355e). In this scenario pin was registered twice,
so resources are not yet expected to be release until each registered
pin/pin pair is unregistered.
Currently, the following crash/call trace is produced when ice driver is
removed on the system with installed E810T NIC which includes dpll device:
WARNING: CPU: 51 PID: 9155 at drivers/dpll/dpll_core.c:809 dpll_pin_ops+0x20/0x30
RIP: 0010:dpll_pin_ops+0x20/0x30
Call Trace:
? __warn+0x7f/0x130
? dpll_pin_ops+0x20/0x30
dpll_msg_add_pin_freq+0x37/0x1d0
dpll_cmd_pin_get_one+0x1c0/0x400
? __nlmsg_put+0x63/0x80
dpll_pin_event_send+0x93/0x140
dpll_pin_on_pin_unregister+0x3f/0x100
ice_dpll_deinit_pins+0xa1/0x230 [ice]
ice_remove+0xf1/0x210 [ice]
Fix by adding a parent pointer as a cookie when creating a registration,
also when searching for it. For the regular pins pass NULL, this allows to
create separated registration for each parent the pin is registered with. |
| In the Linux kernel, the following vulnerability has been resolved:
dmaengine: idxd: Convert spinlock to mutex to lock evl workqueue
drain_workqueue() cannot be called safely in a spinlocked context due to
possible task rescheduling. In the multi-task scenario, calling
queue_work() while drain_workqueue() will lead to a Call Trace as
pushing a work on a draining workqueue is not permitted in spinlocked
context.
Call Trace:
<TASK>
? __warn+0x7d/0x140
? __queue_work+0x2b2/0x440
? report_bug+0x1f8/0x200
? handle_bug+0x3c/0x70
? exc_invalid_op+0x18/0x70
? asm_exc_invalid_op+0x1a/0x20
? __queue_work+0x2b2/0x440
queue_work_on+0x28/0x30
idxd_misc_thread+0x303/0x5a0 [idxd]
? __schedule+0x369/0xb40
? __pfx_irq_thread_fn+0x10/0x10
? irq_thread+0xbc/0x1b0
irq_thread_fn+0x21/0x70
irq_thread+0x102/0x1b0
? preempt_count_add+0x74/0xa0
? __pfx_irq_thread_dtor+0x10/0x10
? __pfx_irq_thread+0x10/0x10
kthread+0x103/0x140
? __pfx_kthread+0x10/0x10
ret_from_fork+0x31/0x50
? __pfx_kthread+0x10/0x10
ret_from_fork_asm+0x1b/0x30
</TASK>
The current implementation uses a spinlock to protect event log workqueue
and will lead to the Call Trace due to potential task rescheduling.
To address the locking issue, convert the spinlock to mutex, allowing
the drain_workqueue() to be called in a safe mutex-locked context.
This change ensures proper synchronization when accessing the event log
workqueue, preventing potential Call Trace and improving the overall
robustness of the code. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: ath11k: decrease MHI channel buffer length to 8KB
Currently buf_len field of ath11k_mhi_config_qca6390 is assigned
with 0, making MHI use a default size, 64KB, to allocate channel
buffers. This is likely to fail in some scenarios where system
memory is highly fragmented and memory compaction or reclaim is
not allowed.
There is a fail report which is caused by it:
kworker/u32:45: page allocation failure: order:4, mode:0x40c00(GFP_NOIO|__GFP_COMP), nodemask=(null),cpuset=/,mems_allowed=0
CPU: 0 PID: 19318 Comm: kworker/u32:45 Not tainted 6.8.0-rc3-1.gae4495f-default #1 openSUSE Tumbleweed (unreleased) 493b6d5b382c603654d7a81fc3c144d59a1dfceb
Workqueue: events_unbound async_run_entry_fn
Call Trace:
<TASK>
dump_stack_lvl+0x47/0x60
warn_alloc+0x13a/0x1b0
? srso_alias_return_thunk+0x5/0xfbef5
? __alloc_pages_direct_compact+0xab/0x210
__alloc_pages_slowpath.constprop.0+0xd3e/0xda0
__alloc_pages+0x32d/0x350
? mhi_prepare_channel+0x127/0x2d0 [mhi 40df44e07c05479f7a6e7b90fba9f0e0031a7814]
__kmalloc_large_node+0x72/0x110
__kmalloc+0x37c/0x480
? mhi_map_single_no_bb+0x77/0xf0 [mhi 40df44e07c05479f7a6e7b90fba9f0e0031a7814]
? mhi_prepare_channel+0x127/0x2d0 [mhi 40df44e07c05479f7a6e7b90fba9f0e0031a7814]
mhi_prepare_channel+0x127/0x2d0 [mhi 40df44e07c05479f7a6e7b90fba9f0e0031a7814]
__mhi_prepare_for_transfer+0x44/0x80 [mhi 40df44e07c05479f7a6e7b90fba9f0e0031a7814]
? __pfx_____mhi_prepare_for_transfer+0x10/0x10 [mhi 40df44e07c05479f7a6e7b90fba9f0e0031a7814]
device_for_each_child+0x5c/0xa0
? __pfx_pci_pm_resume+0x10/0x10
ath11k_core_resume+0x65/0x100 [ath11k a5094e22d7223135c40d93c8f5321cf09fd85e4e]
? srso_alias_return_thunk+0x5/0xfbef5
ath11k_pci_pm_resume+0x32/0x60 [ath11k_pci 830b7bfc3ea80ebef32e563cafe2cb55e9cc73ec]
? srso_alias_return_thunk+0x5/0xfbef5
dpm_run_callback+0x8c/0x1e0
device_resume+0x104/0x340
? __pfx_dpm_watchdog_handler+0x10/0x10
async_resume+0x1d/0x30
async_run_entry_fn+0x32/0x120
process_one_work+0x168/0x330
worker_thread+0x2f5/0x410
? __pfx_worker_thread+0x10/0x10
kthread+0xe8/0x120
? __pfx_kthread+0x10/0x10
ret_from_fork+0x34/0x50
? __pfx_kthread+0x10/0x10
ret_from_fork_asm+0x1b/0x30
</TASK>
Actually those buffers are used only by QMI target -> host communication.
And for WCN6855 and QCA6390, the largest packet size for that is less
than 6KB. So change buf_len field to 8KB, which results in order 1
allocation if page size is 4KB. In this way, we can at least save some
memory, and as well as decrease the possibility of allocation failure
in those scenarios.
Tested-on: WCN6855 hw2.0 PCI WLAN.HSP.1.1-03125-QCAHSPSWPL_V1_V2_SILICONZ_LITE-3.6510.30 |
| In the Linux kernel, the following vulnerability has been resolved:
userfaultfd: fix a race between writeprotect and exit_mmap()
A race is possible when a process exits, its VMAs are removed by
exit_mmap() and at the same time userfaultfd_writeprotect() is called.
The race was detected by KASAN on a development kernel, but it appears
to be possible on vanilla kernels as well.
Use mmget_not_zero() to prevent the race as done in other userfaultfd
operations. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/radeon: possible buffer overflow
Buffer 'afmt_status' of size 6 could overflow, since index 'afmt_idx' is
checked after access. |
| In the Linux kernel, the following vulnerability has been resolved:
platform/x86: wmi: Fix opening of char device
Since commit fa1f68db6ca7 ("drivers: misc: pass miscdevice pointer via
file private data"), the miscdevice stores a pointer to itself inside
filp->private_data, which means that private_data will not be NULL when
wmi_char_open() is called. This might cause memory corruption should
wmi_char_open() be unable to find its driver, something which can
happen when the associated WMI device is deleted in wmi_free_devices().
Fix the problem by using the miscdevice pointer to retrieve the WMI
device data associated with a char device using container_of(). This
also avoids wmi_char_open() picking a wrong WMI device bound to a
driver with the same name as the original driver. |
| In the Linux kernel, the following vulnerability has been resolved:
hwmon: (mlxreg-fan) Return non-zero value when fan current state is enforced from sysfs
Fan speed minimum can be enforced from sysfs. For example, setting
current fan speed to 20 is used to enforce fan speed to be at 100%
speed, 19 - to be not below 90% speed, etcetera. This feature provides
ability to limit fan speed according to some system wise
considerations, like absence of some replaceable units or high system
ambient temperature.
Request for changing fan minimum speed is configuration request and can
be set only through 'sysfs' write procedure. In this situation value of
argument 'state' is above nominal fan speed maximum.
Return non-zero code in this case to avoid
thermal_cooling_device_stats_update() call, because in this case
statistics update violates thermal statistics table range.
The issues is observed in case kernel is configured with option
CONFIG_THERMAL_STATISTICS.
Here is the trace from KASAN:
[ 159.506659] BUG: KASAN: slab-out-of-bounds in thermal_cooling_device_stats_update+0x7d/0xb0
[ 159.516016] Read of size 4 at addr ffff888116163840 by task hw-management.s/7444
[ 159.545625] Call Trace:
[ 159.548366] dump_stack+0x92/0xc1
[ 159.552084] ? thermal_cooling_device_stats_update+0x7d/0xb0
[ 159.635869] thermal_zone_device_update+0x345/0x780
[ 159.688711] thermal_zone_device_set_mode+0x7d/0xc0
[ 159.694174] mlxsw_thermal_modules_init+0x48f/0x590 [mlxsw_core]
[ 159.700972] ? mlxsw_thermal_set_cur_state+0x5a0/0x5a0 [mlxsw_core]
[ 159.731827] mlxsw_thermal_init+0x763/0x880 [mlxsw_core]
[ 160.070233] RIP: 0033:0x7fd995909970
[ 160.074239] Code: 73 01 c3 48 8b 0d 28 d5 2b 00 f7 d8 64 89 01 48 83 c8 ff c3 66 0f 1f 44 00 00 83 3d 99 2d 2c 00 00 75 10 b8 01 00 00 00 0f 05 <48> 3d 01 f0 ff ..
[ 160.095242] RSP: 002b:00007fff54f5d938 EFLAGS: 00000246 ORIG_RAX: 0000000000000001
[ 160.103722] RAX: ffffffffffffffda RBX: 0000000000000013 RCX: 00007fd995909970
[ 160.111710] RDX: 0000000000000013 RSI: 0000000001906008 RDI: 0000000000000001
[ 160.119699] RBP: 0000000001906008 R08: 00007fd995bc9760 R09: 00007fd996210700
[ 160.127687] R10: 0000000000000073 R11: 0000000000000246 R12: 0000000000000013
[ 160.135673] R13: 0000000000000001 R14: 00007fd995bc8600 R15: 0000000000000013
[ 160.143671]
[ 160.145338] Allocated by task 2924:
[ 160.149242] kasan_save_stack+0x19/0x40
[ 160.153541] __kasan_kmalloc+0x7f/0xa0
[ 160.157743] __kmalloc+0x1a2/0x2b0
[ 160.161552] thermal_cooling_device_setup_sysfs+0xf9/0x1a0
[ 160.167687] __thermal_cooling_device_register+0x1b5/0x500
[ 160.173833] devm_thermal_of_cooling_device_register+0x60/0xa0
[ 160.180356] mlxreg_fan_probe+0x474/0x5e0 [mlxreg_fan]
[ 160.248140]
[ 160.249807] The buggy address belongs to the object at ffff888116163400
[ 160.249807] which belongs to the cache kmalloc-1k of size 1024
[ 160.263814] The buggy address is located 64 bytes to the right of
[ 160.263814] 1024-byte region [ffff888116163400, ffff888116163800)
[ 160.277536] The buggy address belongs to the page:
[ 160.282898] page:0000000012275840 refcount:1 mapcount:0 mapping:0000000000000000 index:0xffff888116167000 pfn:0x116160
[ 160.294872] head:0000000012275840 order:3 compound_mapcount:0 compound_pincount:0
[ 160.303251] flags: 0x200000000010200(slab|head|node=0|zone=2)
[ 160.309694] raw: 0200000000010200 ffffea00046f7208 ffffea0004928208 ffff88810004dbc0
[ 160.318367] raw: ffff888116167000 00000000000a0006 00000001ffffffff 0000000000000000
[ 160.327033] page dumped because: kasan: bad access detected
[ 160.333270]
[ 160.334937] Memory state around the buggy address:
[ 160.356469] >ffff888116163800: fc .. |
| In the Linux kernel, the following vulnerability has been resolved:
SUNRPC: Fix RPC client cleaned up the freed pipefs dentries
RPC client pipefs dentries cleanup is in separated rpc_remove_pipedir()
workqueue,which takes care about pipefs superblock locking.
In some special scenarios, when kernel frees the pipefs sb of the
current client and immediately alloctes a new pipefs sb,
rpc_remove_pipedir function would misjudge the existence of pipefs
sb which is not the one it used to hold. As a result,
the rpc_remove_pipedir would clean the released freed pipefs dentries.
To fix this issue, rpc_remove_pipedir should check whether the
current pipefs sb is consistent with the original pipefs sb.
This error can be catched by KASAN:
=========================================================
[ 250.497700] BUG: KASAN: slab-use-after-free in dget_parent+0x195/0x200
[ 250.498315] Read of size 4 at addr ffff88800a2ab804 by task kworker/0:18/106503
[ 250.500549] Workqueue: events rpc_free_client_work
[ 250.501001] Call Trace:
[ 250.502880] kasan_report+0xb6/0xf0
[ 250.503209] ? dget_parent+0x195/0x200
[ 250.503561] dget_parent+0x195/0x200
[ 250.503897] ? __pfx_rpc_clntdir_depopulate+0x10/0x10
[ 250.504384] rpc_rmdir_depopulate+0x1b/0x90
[ 250.504781] rpc_remove_client_dir+0xf5/0x150
[ 250.505195] rpc_free_client_work+0xe4/0x230
[ 250.505598] process_one_work+0x8ee/0x13b0
...
[ 22.039056] Allocated by task 244:
[ 22.039390] kasan_save_stack+0x22/0x50
[ 22.039758] kasan_set_track+0x25/0x30
[ 22.040109] __kasan_slab_alloc+0x59/0x70
[ 22.040487] kmem_cache_alloc_lru+0xf0/0x240
[ 22.040889] __d_alloc+0x31/0x8e0
[ 22.041207] d_alloc+0x44/0x1f0
[ 22.041514] __rpc_lookup_create_exclusive+0x11c/0x140
[ 22.041987] rpc_mkdir_populate.constprop.0+0x5f/0x110
[ 22.042459] rpc_create_client_dir+0x34/0x150
[ 22.042874] rpc_setup_pipedir_sb+0x102/0x1c0
[ 22.043284] rpc_client_register+0x136/0x4e0
[ 22.043689] rpc_new_client+0x911/0x1020
[ 22.044057] rpc_create_xprt+0xcb/0x370
[ 22.044417] rpc_create+0x36b/0x6c0
...
[ 22.049524] Freed by task 0:
[ 22.049803] kasan_save_stack+0x22/0x50
[ 22.050165] kasan_set_track+0x25/0x30
[ 22.050520] kasan_save_free_info+0x2b/0x50
[ 22.050921] __kasan_slab_free+0x10e/0x1a0
[ 22.051306] kmem_cache_free+0xa5/0x390
[ 22.051667] rcu_core+0x62c/0x1930
[ 22.051995] __do_softirq+0x165/0x52a
[ 22.052347]
[ 22.052503] Last potentially related work creation:
[ 22.052952] kasan_save_stack+0x22/0x50
[ 22.053313] __kasan_record_aux_stack+0x8e/0xa0
[ 22.053739] __call_rcu_common.constprop.0+0x6b/0x8b0
[ 22.054209] dentry_free+0xb2/0x140
[ 22.054540] __dentry_kill+0x3be/0x540
[ 22.054900] shrink_dentry_list+0x199/0x510
[ 22.055293] shrink_dcache_parent+0x190/0x240
[ 22.055703] do_one_tree+0x11/0x40
[ 22.056028] shrink_dcache_for_umount+0x61/0x140
[ 22.056461] generic_shutdown_super+0x70/0x590
[ 22.056879] kill_anon_super+0x3a/0x60
[ 22.057234] rpc_kill_sb+0x121/0x200 |
| In the Linux kernel, the following vulnerability has been resolved:
ipvlan: add ipvlan_route_v6_outbound() helper
Inspired by syzbot reports using a stack of multiple ipvlan devices.
Reduce stack size needed in ipvlan_process_v6_outbound() by moving
the flowi6 struct used for the route lookup in an non inlined
helper. ipvlan_route_v6_outbound() needs 120 bytes on the stack,
immediately reclaimed.
Also make sure ipvlan_process_v4_outbound() is not inlined.
We might also have to lower MAX_NEST_DEV, because only syzbot uses
setups with more than four stacked devices.
BUG: TASK stack guard page was hit at ffffc9000e803ff8 (stack is ffffc9000e804000..ffffc9000e808000)
stack guard page: 0000 [#1] SMP KASAN
CPU: 0 PID: 13442 Comm: syz-executor.4 Not tainted 6.1.52-syzkaller #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 10/09/2023
RIP: 0010:kasan_check_range+0x4/0x2a0 mm/kasan/generic.c:188
Code: 48 01 c6 48 89 c7 e8 db 4e c1 03 31 c0 5d c3 cc 0f 0b eb 02 0f 0b b8 ea ff ff ff 5d c3 cc 00 00 cc cc 00 00 cc cc 55 48 89 e5 <41> 57 41 56 41 55 41 54 53 b0 01 48 85 f6 0f 84 a4 01 00 00 48 89
RSP: 0018:ffffc9000e804000 EFLAGS: 00010246
RAX: 0000000000000000 RBX: 0000000000000000 RCX: ffffffff817e5bf2
RDX: 0000000000000000 RSI: 0000000000000008 RDI: ffffffff887c6568
RBP: ffffc9000e804000 R08: 0000000000000000 R09: 0000000000000000
R10: 0000000000000000 R11: dffffc0000000001 R12: 1ffff92001d0080c
R13: dffffc0000000000 R14: ffffffff87e6b100 R15: 0000000000000000
FS: 00007fd0c55826c0(0000) GS:ffff8881f6800000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: ffffc9000e803ff8 CR3: 0000000170ef7000 CR4: 00000000003506f0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
<#DF>
</#DF>
<TASK>
[<ffffffff81f281d1>] __kasan_check_read+0x11/0x20 mm/kasan/shadow.c:31
[<ffffffff817e5bf2>] instrument_atomic_read include/linux/instrumented.h:72 [inline]
[<ffffffff817e5bf2>] _test_bit include/asm-generic/bitops/instrumented-non-atomic.h:141 [inline]
[<ffffffff817e5bf2>] cpumask_test_cpu include/linux/cpumask.h:506 [inline]
[<ffffffff817e5bf2>] cpu_online include/linux/cpumask.h:1092 [inline]
[<ffffffff817e5bf2>] trace_lock_acquire include/trace/events/lock.h:24 [inline]
[<ffffffff817e5bf2>] lock_acquire+0xe2/0x590 kernel/locking/lockdep.c:5632
[<ffffffff8563221e>] rcu_lock_acquire+0x2e/0x40 include/linux/rcupdate.h:306
[<ffffffff8561464d>] rcu_read_lock include/linux/rcupdate.h:747 [inline]
[<ffffffff8561464d>] ip6_pol_route+0x15d/0x1440 net/ipv6/route.c:2221
[<ffffffff85618120>] ip6_pol_route_output+0x50/0x80 net/ipv6/route.c:2606
[<ffffffff856f65b5>] pol_lookup_func include/net/ip6_fib.h:584 [inline]
[<ffffffff856f65b5>] fib6_rule_lookup+0x265/0x620 net/ipv6/fib6_rules.c:116
[<ffffffff85618009>] ip6_route_output_flags_noref+0x2d9/0x3a0 net/ipv6/route.c:2638
[<ffffffff8561821a>] ip6_route_output_flags+0xca/0x340 net/ipv6/route.c:2651
[<ffffffff838bd5a3>] ip6_route_output include/net/ip6_route.h:100 [inline]
[<ffffffff838bd5a3>] ipvlan_process_v6_outbound drivers/net/ipvlan/ipvlan_core.c:473 [inline]
[<ffffffff838bd5a3>] ipvlan_process_outbound drivers/net/ipvlan/ipvlan_core.c:529 [inline]
[<ffffffff838bd5a3>] ipvlan_xmit_mode_l3 drivers/net/ipvlan/ipvlan_core.c:602 [inline]
[<ffffffff838bd5a3>] ipvlan_queue_xmit+0xc33/0x1be0 drivers/net/ipvlan/ipvlan_core.c:677
[<ffffffff838c2909>] ipvlan_start_xmit+0x49/0x100 drivers/net/ipvlan/ipvlan_main.c:229
[<ffffffff84d03900>] netdev_start_xmit include/linux/netdevice.h:4966 [inline]
[<ffffffff84d03900>] xmit_one net/core/dev.c:3644 [inline]
[<ffffffff84d03900>] dev_hard_start_xmit+0x320/0x980 net/core/dev.c:3660
[<ffffffff84d080e2>] __dev_queue_xmit+0x16b2/0x3370 net/core/dev.c:4324
[<ffffffff855ce4cd>] dev_queue_xmit include/linux/netdevice.h:3067 [inline]
[<ffffffff855ce4cd>] neigh_hh_output include/net/neighbour.h:529 [inline]
[<f
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
net/smc: avoid data corruption caused by decline
We found a data corruption issue during testing of SMC-R on Redis
applications.
The benchmark has a low probability of reporting a strange error as
shown below.
"Error: Protocol error, got "\xe2" as reply type byte"
Finally, we found that the retrieved error data was as follows:
0xE2 0xD4 0xC3 0xD9 0x04 0x00 0x2C 0x20 0xA6 0x56 0x00 0x16 0x3E 0x0C
0xCB 0x04 0x02 0x01 0x00 0x00 0x20 0x00 0x00 0x00 0x00 0x00 0x00 0x00
0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0xE2
It is quite obvious that this is a SMC DECLINE message, which means that
the applications received SMC protocol message.
We found that this was caused by the following situations:
client server
¦ clc proposal
------------->
¦ clc accept
<-------------
¦ clc confirm
------------->
wait llc confirm
send llc confirm
¦failed llc confirm
¦ x------
(after 2s)timeout
wait llc confirm rsp
wait decline
(after 1s) timeout
(after 2s) timeout
¦ decline
-------------->
¦ decline
<--------------
As a result, a decline message was sent in the implementation, and this
message was read from TCP by the already-fallback connection.
This patch double the client timeout as 2x of the server value,
With this simple change, the Decline messages should never cross or
collide (during Confirm link timeout).
This issue requires an immediate solution, since the protocol updates
involve a more long-term solution. |
| In the Linux kernel, the following vulnerability has been resolved:
cxl/port: Fix delete_endpoint() vs parent unregistration race
The CXL subsystem, at cxl_mem ->probe() time, establishes a lineage of
ports (struct cxl_port objects) between an endpoint and the root of a
CXL topology. Each port including the endpoint port is attached to the
cxl_port driver.
Given that setup, it follows that when either any port in that lineage
goes through a cxl_port ->remove() event, or the memdev goes through a
cxl_mem ->remove() event. The hierarchy below the removed port, or the
entire hierarchy if the memdev is removed needs to come down.
The delete_endpoint() callback is careful to check whether it is being
called to tear down the hierarchy, or if it is only being called to
teardown the memdev because an ancestor port is going through
->remove().
That care needs to take the device_lock() of the endpoint's parent.
Which requires 2 bugs to be fixed:
1/ A reference on the parent is needed to prevent use-after-free
scenarios like this signature:
BUG: spinlock bad magic on CPU#0, kworker/u56:0/11
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS edk2-20230524-3.fc38 05/24/2023
Workqueue: cxl_port detach_memdev [cxl_core]
RIP: 0010:spin_bug+0x65/0xa0
Call Trace:
do_raw_spin_lock+0x69/0xa0
__mutex_lock+0x695/0xb80
delete_endpoint+0xad/0x150 [cxl_core]
devres_release_all+0xb8/0x110
device_unbind_cleanup+0xe/0x70
device_release_driver_internal+0x1d2/0x210
detach_memdev+0x15/0x20 [cxl_core]
process_one_work+0x1e3/0x4c0
worker_thread+0x1dd/0x3d0
2/ In the case of RCH topologies, the parent device that needs to be
locked is not always @port->dev as returned by cxl_mem_find_port(), use
endpoint->dev.parent instead. |
| In the Linux kernel, the following vulnerability has been resolved:
powerpc/64s/interrupt: Fix interrupt exit race with security mitigation switch
The RFI and STF security mitigation options can flip the
interrupt_exit_not_reentrant static branch condition concurrently with
the interrupt exit code which tests that branch.
Interrupt exit tests this condition to set MSR[EE|RI] for exit, then
again in the case a soft-masked interrupt is found pending, to recover
the MSR so the interrupt can be replayed before attempting to exit
again. If the condition changes between these two tests, the MSR and irq
soft-mask state will become corrupted, leading to warnings and possible
crashes. For example, if the branch is initially true then false,
MSR[EE] will be 0 but PACA_IRQ_HARD_DIS clear and EE may not get
enabled, leading to warnings in irq_64.c. |
| In the Linux kernel, the following vulnerability has been resolved:
fbdev: Fix invalid page access after closing deferred I/O devices
When a fbdev with deferred I/O is once opened and closed, the dirty
pages still remain queued in the pageref list, and eventually later
those may be processed in the delayed work. This may lead to a
corruption of pages, hitting an Oops.
This patch makes sure to cancel the delayed work and clean up the
pageref list at closing the device for addressing the bug. A part of
the cleanup code is factored out as a new helper function that is
called from the common fb_release(). |
| In the Linux kernel, the following vulnerability has been resolved:
mmc: sdio: fix possible resource leaks in some error paths
If sdio_add_func() or sdio_init_func() fails, sdio_remove_func() can
not release the resources, because the sdio function is not presented
in these two cases, it won't call of_node_put() or put_device().
To fix these leaks, make sdio_func_present() only control whether
device_del() needs to be called or not, then always call of_node_put()
and put_device().
In error case in sdio_init_func(), the reference of 'card->dev' is
not get, to avoid redundant put in sdio_free_func_cis(), move the
get_device() to sdio_alloc_func() and put_device() to sdio_release_func(),
it can keep the get/put function be balanced.
Without this patch, while doing fault inject test, it can get the
following leak reports, after this fix, the leak is gone.
unreferenced object 0xffff888112514000 (size 2048):
comm "kworker/3:2", pid 65, jiffies 4294741614 (age 124.774s)
hex dump (first 32 bytes):
00 e0 6f 12 81 88 ff ff 60 58 8d 06 81 88 ff ff ..o.....`X......
10 40 51 12 81 88 ff ff 10 40 51 12 81 88 ff ff .@Q......@Q.....
backtrace:
[<000000009e5931da>] kmalloc_trace+0x21/0x110
[<000000002f839ccb>] mmc_alloc_card+0x38/0xb0 [mmc_core]
[<0000000004adcbf6>] mmc_sdio_init_card+0xde/0x170 [mmc_core]
[<000000007538fea0>] mmc_attach_sdio+0xcb/0x1b0 [mmc_core]
[<00000000d4fdeba7>] mmc_rescan+0x54a/0x640 [mmc_core]
unreferenced object 0xffff888112511000 (size 2048):
comm "kworker/3:2", pid 65, jiffies 4294741623 (age 124.766s)
hex dump (first 32 bytes):
00 40 51 12 81 88 ff ff e0 58 8d 06 81 88 ff ff .@Q......X......
10 10 51 12 81 88 ff ff 10 10 51 12 81 88 ff ff ..Q.......Q.....
backtrace:
[<000000009e5931da>] kmalloc_trace+0x21/0x110
[<00000000fcbe706c>] sdio_alloc_func+0x35/0x100 [mmc_core]
[<00000000c68f4b50>] mmc_attach_sdio.cold.18+0xb1/0x395 [mmc_core]
[<00000000d4fdeba7>] mmc_rescan+0x54a/0x640 [mmc_core] |