| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
ext4: allow ext4_get_group_info() to fail
Previously, ext4_get_group_info() would treat an invalid group number
as BUG(), since in theory it should never happen. However, if a
malicious attaker (or fuzzer) modifies the superblock via the block
device while it is the file system is mounted, it is possible for
s_first_data_block to get set to a very large number. In that case,
when calculating the block group of some block number (such as the
starting block of a preallocation region), could result in an
underflow and very large block group number. Then the BUG_ON check in
ext4_get_group_info() would fire, resutling in a denial of service
attack that can be triggered by root or someone with write access to
the block device.
For a quality of implementation perspective, it's best that even if
the system administrator does something that they shouldn't, that it
will not trigger a BUG. So instead of BUG'ing, ext4_get_group_info()
will call ext4_error and return NULL. We also add fallback code in
all of the callers of ext4_get_group_info() that it might NULL.
Also, since ext4_get_group_info() was already borderline to be an
inline function, un-inline it. The results in a next reduction of the
compiled text size of ext4 by roughly 2k. |
| In the Linux kernel, the following vulnerability has been resolved:
start_kernel: Add __no_stack_protector function attribute
Back during the discussion of
commit a9a3ed1eff36 ("x86: Fix early boot crash on gcc-10, third try")
we discussed the need for a function attribute to control the omission
of stack protectors on a per-function basis; at the time Clang had
support for no_stack_protector but GCC did not. This was fixed in
gcc-11. Now that the function attribute is available, let's start using
it.
Callers of boot_init_stack_canary need to use this function attribute
unless they're compiled with -fno-stack-protector, otherwise the canary
stored in the stack slot of the caller will differ upon the call to
boot_init_stack_canary. This will lead to a call to __stack_chk_fail()
then panic. |
| In the Linux kernel, the following vulnerability has been resolved:
fs: jfs: Fix UBSAN: array-index-out-of-bounds in dbAllocDmapLev
Syzkaller reported the following issue:
UBSAN: array-index-out-of-bounds in fs/jfs/jfs_dmap.c:1965:6
index -84 is out of range for type 's8[341]' (aka 'signed char[341]')
CPU: 1 PID: 4995 Comm: syz-executor146 Not tainted 6.4.0-rc6-syzkaller-00037-gb6dad5178cea #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 05/27/2023
Call Trace:
<TASK>
__dump_stack lib/dump_stack.c:88 [inline]
dump_stack_lvl+0x1e7/0x2d0 lib/dump_stack.c:106
ubsan_epilogue lib/ubsan.c:217 [inline]
__ubsan_handle_out_of_bounds+0x11c/0x150 lib/ubsan.c:348
dbAllocDmapLev+0x3e5/0x430 fs/jfs/jfs_dmap.c:1965
dbAllocCtl+0x113/0x920 fs/jfs/jfs_dmap.c:1809
dbAllocAG+0x28f/0x10b0 fs/jfs/jfs_dmap.c:1350
dbAlloc+0x658/0xca0 fs/jfs/jfs_dmap.c:874
dtSplitUp fs/jfs/jfs_dtree.c:974 [inline]
dtInsert+0xda7/0x6b00 fs/jfs/jfs_dtree.c:863
jfs_create+0x7b6/0xbb0 fs/jfs/namei.c:137
lookup_open fs/namei.c:3492 [inline]
open_last_lookups fs/namei.c:3560 [inline]
path_openat+0x13df/0x3170 fs/namei.c:3788
do_filp_open+0x234/0x490 fs/namei.c:3818
do_sys_openat2+0x13f/0x500 fs/open.c:1356
do_sys_open fs/open.c:1372 [inline]
__do_sys_openat fs/open.c:1388 [inline]
__se_sys_openat fs/open.c:1383 [inline]
__x64_sys_openat+0x247/0x290 fs/open.c:1383
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x41/0xc0 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x63/0xcd
RIP: 0033:0x7f1f4e33f7e9
Code: 28 00 00 00 75 05 48 83 c4 28 c3 e8 51 14 00 00 90 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 c7 c1 c0 ff ff ff f7 d8 64 89 01 48
RSP: 002b:00007ffc21129578 EFLAGS: 00000246 ORIG_RAX: 0000000000000101
RAX: ffffffffffffffda RBX: 0000000000000000 RCX: 00007f1f4e33f7e9
RDX: 000000000000275a RSI: 0000000020000040 RDI: 00000000ffffff9c
RBP: 00007f1f4e2ff080 R08: 0000000000000000 R09: 0000000000000000
R10: 0000000000000000 R11: 0000000000000246 R12: 00007f1f4e2ff110
R13: 0000000000000000 R14: 0000000000000000 R15: 0000000000000000
</TASK>
The bug occurs when the dbAllocDmapLev()function attempts to access
dp->tree.stree[leafidx + LEAFIND] while the leafidx value is negative.
To rectify this, the patch introduces a safeguard within the
dbAllocDmapLev() function. A check has been added to verify if leafidx is
negative. If it is, the function immediately returns an I/O error, preventing
any further execution that could potentially cause harm.
Tested via syzbot. |
| In the Linux kernel, the following vulnerability has been resolved:
lib: cpu_rmap: Avoid use after free on rmap->obj array entries
When calling irq_set_affinity_notifier() with NULL at the notify
argument, it will cause freeing of the glue pointer in the
corresponding array entry but will leave the pointer in the array. A
subsequent call to free_irq_cpu_rmap() will try to free this entry again
leading to possible use after free.
Fix that by setting NULL to the array entry and checking that we have
non-zero at the array entry when iterating over the array in
free_irq_cpu_rmap().
The current code does not suffer from this since there are no cases
where irq_set_affinity_notifier(irq, NULL) (note the NULL passed for the
notify arg) is called, followed by a call to free_irq_cpu_rmap() so we
don't hit and issue. Subsequent patches in this series excersize this
flow, hence the required fix. |
| In the Linux kernel, the following vulnerability has been resolved:
ACPI: processor: Check for null return of devm_kzalloc() in fch_misc_setup()
devm_kzalloc() may fail, clk_data->name might be NULL and will
cause a NULL pointer dereference later.
[ rjw: Subject and changelog edits ] |
| In the Linux kernel, the following vulnerability has been resolved:
media: cx23885: Fix a null-ptr-deref bug in buffer_prepare() and buffer_finish()
When the driver calls cx23885_risc_buffer() to prepare the buffer, the
function call dma_alloc_coherent may fail, resulting in a empty buffer
risc->cpu. Later when we free the buffer or access the buffer, null ptr
deref is triggered.
This bug is similar to the following one:
https://git.linuxtv.org/media_stage.git/commit/?id=2b064d91440b33fba5b452f2d1b31f13ae911d71.
We believe the bug can be also dynamically triggered from user side.
Similarly, we fix this by checking the return value of cx23885_risc_buffer()
and the value of risc->cpu before buffer free. |
| In the Linux kernel, the following vulnerability has been resolved:
FS: JFS: Fix null-ptr-deref Read in txBegin
Syzkaller reported an issue where txBegin may be called
on a superblock in a read-only mounted filesystem which leads
to NULL pointer deref. This could be solved by checking if
the filesystem is read-only before calling txBegin, and returning
with appropiate error code. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/radeon: free iio for atombios when driver shutdown
Fix below kmemleak when unload radeon driver:
unreferenced object 0xffff9f8608ede200 (size 512):
comm "systemd-udevd", pid 326, jiffies 4294682822 (age 716.338s)
hex dump (first 32 bytes):
00 00 00 00 c4 aa ec aa 14 ab 00 00 00 00 00 00 ................
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
backtrace:
[<0000000062fadebe>] kmem_cache_alloc_trace+0x2f1/0x500
[<00000000b6883cea>] atom_parse+0x117/0x230 [radeon]
[<00000000158c23fd>] radeon_atombios_init+0xab/0x170 [radeon]
[<00000000683f672e>] si_init+0x57/0x750 [radeon]
[<00000000566cc31f>] radeon_device_init+0x559/0x9c0 [radeon]
[<0000000046efabb3>] radeon_driver_load_kms+0xc1/0x1a0 [radeon]
[<00000000b5155064>] drm_dev_register+0xdd/0x1d0
[<0000000045fec835>] radeon_pci_probe+0xbd/0x100 [radeon]
[<00000000e69ecca3>] pci_device_probe+0xe1/0x160
[<0000000019484b76>] really_probe.part.0+0xc1/0x2c0
[<000000003f2649da>] __driver_probe_device+0x96/0x130
[<00000000231c5bb1>] driver_probe_device+0x24/0xf0
[<0000000000a42377>] __driver_attach+0x77/0x190
[<00000000d7574da6>] bus_for_each_dev+0x7f/0xd0
[<00000000633166d2>] driver_attach+0x1e/0x30
[<00000000313b05b8>] bus_add_driver+0x12c/0x1e0
iio was allocated in atom_index_iio() called by atom_parse(),
but it doesn't got released when the dirver is shutdown.
Fix this kmemleak by free it in radeon_atombios_fini(). |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: qla2xxx: Fix potential NULL pointer dereference
Klocwork tool reported 'cur_dsd' may be dereferenced. Add fix to validate
pointer before dereferencing the pointer. |
| In the Linux kernel, the following vulnerability has been resolved:
ext4: remove a BUG_ON in ext4_mb_release_group_pa()
If a malicious fuzzer overwrites the ext4 superblock while it is
mounted such that the s_first_data_block is set to a very large
number, the calculation of the block group can underflow, and trigger
a BUG_ON check. Change this to be an ext4_warning so that we don't
crash the kernel. |
| In the Linux kernel, the following vulnerability has been resolved:
USB: uhci: fix memory leak with using debugfs_lookup()
When calling debugfs_lookup() the result must have dput() called on it,
otherwise the memory will leak over time. To make things simpler, just
call debugfs_lookup_and_remove() instead which handles all of the logic
at once. |
| In the Linux kernel, the following vulnerability has been resolved:
ACPICA: Avoid undefined behavior: applying zero offset to null pointer
ACPICA commit 770653e3ba67c30a629ca7d12e352d83c2541b1e
Before this change we see the following UBSAN stack trace in Fuchsia:
#0 0x000021e4213b3302 in acpi_ds_init_aml_walk(struct acpi_walk_state*, union acpi_parse_object*, struct acpi_namespace_node*, u8*, u32, struct acpi_evaluate_info*, u8) ../../third_party/acpica/source/components/dispatcher/dswstate.c:682 <platform-bus-x86.so>+0x233302
#1.2 0x000020d0f660777f in ubsan_get_stack_trace() compiler-rt/lib/ubsan/ubsan_diag.cpp:41 <libclang_rt.asan.so>+0x3d77f
#1.1 0x000020d0f660777f in maybe_print_stack_trace() compiler-rt/lib/ubsan/ubsan_diag.cpp:51 <libclang_rt.asan.so>+0x3d77f
#1 0x000020d0f660777f in ~scoped_report() compiler-rt/lib/ubsan/ubsan_diag.cpp:387 <libclang_rt.asan.so>+0x3d77f
#2 0x000020d0f660b96d in handlepointer_overflow_impl() compiler-rt/lib/ubsan/ubsan_handlers.cpp:809 <libclang_rt.asan.so>+0x4196d
#3 0x000020d0f660b50d in compiler-rt/lib/ubsan/ubsan_handlers.cpp:815 <libclang_rt.asan.so>+0x4150d
#4 0x000021e4213b3302 in acpi_ds_init_aml_walk(struct acpi_walk_state*, union acpi_parse_object*, struct acpi_namespace_node*, u8*, u32, struct acpi_evaluate_info*, u8) ../../third_party/acpica/source/components/dispatcher/dswstate.c:682 <platform-bus-x86.so>+0x233302
#5 0x000021e4213e2369 in acpi_ds_call_control_method(struct acpi_thread_state*, struct acpi_walk_state*, union acpi_parse_object*) ../../third_party/acpica/source/components/dispatcher/dsmethod.c:605 <platform-bus-x86.so>+0x262369
#6 0x000021e421437fac in acpi_ps_parse_aml(struct acpi_walk_state*) ../../third_party/acpica/source/components/parser/psparse.c:550 <platform-bus-x86.so>+0x2b7fac
#7 0x000021e4214464d2 in acpi_ps_execute_method(struct acpi_evaluate_info*) ../../third_party/acpica/source/components/parser/psxface.c:244 <platform-bus-x86.so>+0x2c64d2
#8 0x000021e4213aa052 in acpi_ns_evaluate(struct acpi_evaluate_info*) ../../third_party/acpica/source/components/namespace/nseval.c:250 <platform-bus-x86.so>+0x22a052
#9 0x000021e421413dd8 in acpi_ns_init_one_device(acpi_handle, u32, void*, void**) ../../third_party/acpica/source/components/namespace/nsinit.c:735 <platform-bus-x86.so>+0x293dd8
#10 0x000021e421429e98 in acpi_ns_walk_namespace(acpi_object_type, acpi_handle, u32, u32, acpi_walk_callback, acpi_walk_callback, void*, void**) ../../third_party/acpica/source/components/namespace/nswalk.c:298 <platform-bus-x86.so>+0x2a9e98
#11 0x000021e4214131ac in acpi_ns_initialize_devices(u32) ../../third_party/acpica/source/components/namespace/nsinit.c:268 <platform-bus-x86.so>+0x2931ac
#12 0x000021e42147c40d in acpi_initialize_objects(u32) ../../third_party/acpica/source/components/utilities/utxfinit.c:304 <platform-bus-x86.so>+0x2fc40d
#13 0x000021e42126d603 in acpi::acpi_impl::initialize_acpi(acpi::acpi_impl*) ../../src/devices/board/lib/acpi/acpi-impl.cc:224 <platform-bus-x86.so>+0xed603
Add a simple check that avoids incrementing a pointer by zero, but
otherwise behaves as before. Note that our findings are against ACPICA
20221020, but the same code exists on master. |
| In the Linux kernel, the following vulnerability has been resolved:
serial: 8250: Reinit port->pm on port specific driver unbind
When we unbind a serial port hardware specific 8250 driver, the generic
serial8250 driver takes over the port. After that we see an oops about 10
seconds later. This can produce the following at least on some TI SoCs:
Unhandled fault: imprecise external abort (0x1406)
Internal error: : 1406 [#1] SMP ARM
Turns out that we may still have the serial port hardware specific driver
port->pm in use, and serial8250_pm() tries to call it after the port
specific driver is gone:
serial8250_pm [8250_base] from uart_change_pm+0x54/0x8c [serial_base]
uart_change_pm [serial_base] from uart_hangup+0x154/0x198 [serial_base]
uart_hangup [serial_base] from __tty_hangup.part.0+0x328/0x37c
__tty_hangup.part.0 from disassociate_ctty+0x154/0x20c
disassociate_ctty from do_exit+0x744/0xaac
do_exit from do_group_exit+0x40/0x8c
do_group_exit from __wake_up_parent+0x0/0x1c
Let's fix the issue by calling serial8250_set_defaults() in
serial8250_unregister_port(). This will set the port back to using
the serial8250 default functions, and sets the port->pm to point to
serial8250_pm. |
| In the Linux kernel, the following vulnerability has been resolved:
tty: pcn_uart: fix memory leak with using debugfs_lookup()
When calling debugfs_lookup() the result must have dput() called on it,
otherwise the memory will leak over time. To make things simpler, just
call debugfs_lookup_and_remove() instead which handles all of the logic
at once. |
| In the Linux kernel, the following vulnerability has been resolved:
md/raid10: prevent soft lockup while flush writes
Currently, there is no limit for raid1/raid10 plugged bio. While flushing
writes, raid1 has cond_resched() while raid10 doesn't, and too many
writes can cause soft lockup.
Follow up soft lockup can be triggered easily with writeback test for
raid10 with ramdisks:
watchdog: BUG: soft lockup - CPU#10 stuck for 27s! [md0_raid10:1293]
Call Trace:
<TASK>
call_rcu+0x16/0x20
put_object+0x41/0x80
__delete_object+0x50/0x90
delete_object_full+0x2b/0x40
kmemleak_free+0x46/0xa0
slab_free_freelist_hook.constprop.0+0xed/0x1a0
kmem_cache_free+0xfd/0x300
mempool_free_slab+0x1f/0x30
mempool_free+0x3a/0x100
bio_free+0x59/0x80
bio_put+0xcf/0x2c0
free_r10bio+0xbf/0xf0
raid_end_bio_io+0x78/0xb0
one_write_done+0x8a/0xa0
raid10_end_write_request+0x1b4/0x430
bio_endio+0x175/0x320
brd_submit_bio+0x3b9/0x9b7 [brd]
__submit_bio+0x69/0xe0
submit_bio_noacct_nocheck+0x1e6/0x5a0
submit_bio_noacct+0x38c/0x7e0
flush_pending_writes+0xf0/0x240
raid10d+0xac/0x1ed0
Fix the problem by adding cond_resched() to raid10 like what raid1 did.
Note that unlimited plugged bio still need to be optimized, for example,
in the case of lots of dirty pages writeback, this will take lots of
memory and io will spend a long time in plug, hence io latency is bad. |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: qla2xxx: Pointer may be dereferenced
Klocwork tool reported pointer 'rport' returned from call to function
fc_bsg_to_rport() may be NULL and will be dereferenced.
Add a fix to validate rport before dereferencing. |
| In the Linux kernel, the following vulnerability has been resolved:
igb: Fix igb_down hung on surprise removal
In a setup where a Thunderbolt hub connects to Ethernet and a display
through USB Type-C, users may experience a hung task timeout when they
remove the cable between the PC and the Thunderbolt hub.
This is because the igb_down function is called multiple times when
the Thunderbolt hub is unplugged. For example, the igb_io_error_detected
triggers the first call, and the igb_remove triggers the second call.
The second call to igb_down will block at napi_synchronize.
Here's the call trace:
__schedule+0x3b0/0xddb
? __mod_timer+0x164/0x5d3
schedule+0x44/0xa8
schedule_timeout+0xb2/0x2a4
? run_local_timers+0x4e/0x4e
msleep+0x31/0x38
igb_down+0x12c/0x22a [igb 6615058754948bfde0bf01429257eb59f13030d4]
__igb_close+0x6f/0x9c [igb 6615058754948bfde0bf01429257eb59f13030d4]
igb_close+0x23/0x2b [igb 6615058754948bfde0bf01429257eb59f13030d4]
__dev_close_many+0x95/0xec
dev_close_many+0x6e/0x103
unregister_netdevice_many+0x105/0x5b1
unregister_netdevice_queue+0xc2/0x10d
unregister_netdev+0x1c/0x23
igb_remove+0xa7/0x11c [igb 6615058754948bfde0bf01429257eb59f13030d4]
pci_device_remove+0x3f/0x9c
device_release_driver_internal+0xfe/0x1b4
pci_stop_bus_device+0x5b/0x7f
pci_stop_bus_device+0x30/0x7f
pci_stop_bus_device+0x30/0x7f
pci_stop_and_remove_bus_device+0x12/0x19
pciehp_unconfigure_device+0x76/0xe9
pciehp_disable_slot+0x6e/0x131
pciehp_handle_presence_or_link_change+0x7a/0x3f7
pciehp_ist+0xbe/0x194
irq_thread_fn+0x22/0x4d
? irq_thread+0x1fd/0x1fd
irq_thread+0x17b/0x1fd
? irq_forced_thread_fn+0x5f/0x5f
kthread+0x142/0x153
? __irq_get_irqchip_state+0x46/0x46
? kthread_associate_blkcg+0x71/0x71
ret_from_fork+0x1f/0x30
In this case, igb_io_error_detected detaches the network interface
and requests a PCIE slot reset, however, the PCIE reset callback is
not being invoked and thus the Ethernet connection breaks down.
As the PCIE error in this case is a non-fatal one, requesting a
slot reset can be avoided.
This patch fixes the task hung issue and preserves Ethernet
connection by ignoring non-fatal PCIE errors. |
| In the Linux kernel, the following vulnerability has been resolved:
media: dw2102: Fix null-ptr-deref in dw2102_i2c_transfer()
In dw2102_i2c_transfer, msg is controlled by user. When msg[i].buf
is null and msg[i].len is zero, former checks on msg[i].buf would be
passed. Malicious data finally reach dw2102_i2c_transfer. If accessing
msg[i].buf[0] without sanity check, null ptr deref would happen.
We add check on msg[i].len to prevent crash.
Similar commit:
commit 950e252cb469
("[media] dw2102: limit messages to buffer size") |
| In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: btsdio: fix use after free bug in btsdio_remove due to race condition
In btsdio_probe, the data->work is bound with btsdio_work. It will be
started in btsdio_send_frame.
If the btsdio_remove runs with a unfinished work, there may be a race
condition that hdev is freed but used in btsdio_work. Fix it by
canceling the work before do cleanup in btsdio_remove. |
| In the Linux kernel, the following vulnerability has been resolved:
fs: prevent out-of-bounds array speculation when closing a file descriptor
Google-Bug-Id: 114199369 |