| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| Sudo before 1.9.13 does not escape control characters in log messages. |
| Improper conditions check in some Intel(R) BIOS PPAM firmware may allow a privileged user to potentially enable escalation of privilege via local access. |
| An authentication bypass vulnerability exists in the CiRpcAccepted() functionality of SoftEther VPN 4.41-9782-beta and 5.01.9674. A specially crafted network packet can lead to unauthorized access. An attacker can send a network request to trigger this vulnerability. |
| Improper buffer restrictions in the Intel(R) Optimization for Tensorflow software before version 2.12 may allow an authenticated user to potentially enable escalation of privilege via local access. |
| IBM Aspera Orchestrator 4.0.1 is vulnerable to HTTP header injection, caused by improper validation of input by the HOST headers. This could allow an attacker to conduct various attacks against the vulnerable system, including cross-site scripting, cache poisoning or session hijacking. IBM X-Force ID: 248478. |
|
IBM QRadar WinCollect Agent 10.0 through 10.1.7 could allow a local user to perform unauthorized actions due to improper encoding. IBM X-Force ID: 248160.
|
| All versions of the package ithewei/libhv are vulnerable to HTTP Response Splitting when untrusted user input is used to build headers values. An attacker can add the \r\n (carriage return line feeds) characters to end the HTTP response headers and inject malicious content, like for example additional headers or new response body, leading to a potential XSS vulnerability. |
| All versions of the package crow are vulnerable to HTTP Response Splitting when untrusted user input is used to build header values. Header values are not properly sanitized against CRLF Injection in the set_header and add_header functions. An attacker can add the \r\n (carriage return line feeds) characters to end the HTTP response headers and inject malicious content. |
| All versions of the package drogonframework/drogon are vulnerable to HTTP Response Splitting when untrusted user input is used to build header values in the addHeader and addCookie functions. An attacker can add the \r\n (carriage return line feeds) characters to end the HTTP response headers and inject malicious content. |
| NVIDIA DGX H100 BMC contains a vulnerability in the host KVM daemon, where an authenticated local attacker may cause corruption of kernel memory. A successful exploit of this vulnerability may lead to arbitrary kernel code execution, denial of service, escalation of privileges, information disclosure, and data tampering. |
| An out-of-bounds write vulnerability exists in the HTTP Server functionality of Weston Embedded uC-HTTP v3.01.01. A specially crafted network packet can lead to memory corruption. An attacker can send a network request to trigger this vulnerability. |
| A heap-based buffer overflow vulnerability exists in the CreateDIBfromPict functionality of Accusoft ImageGear 20.1. A specially crafted file can lead to arbitrary code execution. An attacker can provide a malicious file to trigger this vulnerability. |
| Improper buffer restrictions in some Intel(R) QAT Library software before version 22.07.1 may allow a privileged user to potentially enable information disclosure via local access. |
| Vulnerability in the Oracle Java SE, Oracle GraalVM for JDK, Oracle GraalVM Enterprise Edition, product of Oracle Java SE (component: Hotspot). Supported versions that are affected are Oracle Java SE: 8u381-perf, 17.0.8, 21; Oracle GraalVM for JDK: 17.0.8, 21; Oracle GraalVM Enterprise Edition: 21.3.7 and 22.3.3. Difficult to exploit vulnerability allows unauthenticated attacker with network access via multiple protocols to compromise Oracle Java SE, Oracle GraalVM for JDK, Oracle GraalVM Enterprise Edition,. Successful attacks of this vulnerability can result in unauthorized update, insert or delete access to some of Oracle Java SE, Oracle GraalVM for JDK, Oracle GraalVM Enterprise Edition, accessible data. Note: This vulnerability can be exploited by using APIs in the specified Component, e.g., through a web service which supplies data to the APIs. This vulnerability also applies to Java deployments, typically in clients running sandboxed Java Web Start applications or sandboxed Java applets, that load and run untrusted code (e.g., code that comes from the internet) and rely on the Java sandbox for security. CVSS 3.1 Base Score 3.7 (Integrity impacts). CVSS Vector: (CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:L/A:N). |
| Memory Corruption while accessing metadata in Display. |
| Memory corruption in Audio during playback session with audio effects enabled. |
| Memory corruption in Linux while calling system configuration APIs. |
| Memory Corruption in Radio Interface Layer while sending an SMS or writing an SMS to SIM. |
| Memory corruption in WLAN HAL while processing WMI-UTF command or FTM TLV1 command. |
| In multiple functions of mem_protect.c, there is a possible way to access hypervisor memory due to a memory access check in the wrong place. This could lead to local escalation of privilege with System execution privileges needed. User interaction is not needed for exploitation.
|