| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
fsnotify: clear PARENT_WATCHED flags lazily
In some setups directories can have many (usually negative) dentries.
Hence __fsnotify_update_child_dentry_flags() function can take a
significant amount of time. Since the bulk of this function happens
under inode->i_lock this causes a significant contention on the lock
when we remove the watch from the directory as the
__fsnotify_update_child_dentry_flags() call from fsnotify_recalc_mask()
races with __fsnotify_update_child_dentry_flags() calls from
__fsnotify_parent() happening on children. This can lead upto softlockup
reports reported by users.
Fix the problem by calling fsnotify_update_children_dentry_flags() to
set PARENT_WATCHED flags only when parent starts watching children.
When parent stops watching children, clear false positive PARENT_WATCHED
flags lazily in __fsnotify_parent() for each accessed child. |
| In the Linux kernel, the following vulnerability has been resolved:
pinmux: Use sequential access to access desc->pinmux data
When two client of the same gpio call pinctrl_select_state() for the
same functionality, we are seeing NULL pointer issue while accessing
desc->mux_owner.
Let's say two processes A, B executing in pin_request() for the same pin
and process A updates the desc->mux_usecount but not yet updated the
desc->mux_owner while process B see the desc->mux_usecount which got
updated by A path and further executes strcmp and while accessing
desc->mux_owner it crashes with NULL pointer.
Serialize the access to mux related setting with a mutex lock.
cpu0 (process A) cpu1(process B)
pinctrl_select_state() { pinctrl_select_state() {
pin_request() { pin_request() {
...
....
} else {
desc->mux_usecount++;
desc->mux_usecount && strcmp(desc->mux_owner, owner)) {
if (desc->mux_usecount > 1)
return 0;
desc->mux_owner = owner;
} } |
| In the Linux kernel, the following vulnerability has been resolved:
ELF: fix kernel.randomize_va_space double read
ELF loader uses "randomize_va_space" twice. It is sysctl and can change
at any moment, so 2 loads could see 2 different values in theory with
unpredictable consequences.
Issue exactly one load for consistent value across one exec. |
| In the Linux kernel, the following vulnerability has been resolved:
pci/hotplug/pnv_php: Fix hotplug driver crash on Powernv
The hotplug driver for powerpc (pci/hotplug/pnv_php.c) causes a kernel
crash when we try to hot-unplug/disable the PCIe switch/bridge from
the PHB.
The crash occurs because although the MSI data structure has been
released during disable/hot-unplug path and it has been assigned
with NULL, still during unregistration the code was again trying to
explicitly disable the MSI which causes the NULL pointer dereference and
kernel crash.
The patch fixes the check during unregistration path to prevent invoking
pci_disable_msi/msix() since its data structure is already freed. |
| In the Linux kernel, the following vulnerability has been resolved:
hwmon: (adc128d818) Fix underflows seen when writing limit attributes
DIV_ROUND_CLOSEST() after kstrtol() results in an underflow if a large
negative number such as -9223372036854775808 is provided by the user.
Fix it by reordering clamp_val() and DIV_ROUND_CLOSEST() operations. |
| In the Linux kernel, the following vulnerability has been resolved:
PCI: Add missing bridge lock to pci_bus_lock()
One of the true positives that the cfg_access_lock lockdep effort
identified is this sequence:
WARNING: CPU: 14 PID: 1 at drivers/pci/pci.c:4886 pci_bridge_secondary_bus_reset+0x5d/0x70
RIP: 0010:pci_bridge_secondary_bus_reset+0x5d/0x70
Call Trace:
<TASK>
? __warn+0x8c/0x190
? pci_bridge_secondary_bus_reset+0x5d/0x70
? report_bug+0x1f8/0x200
? handle_bug+0x3c/0x70
? exc_invalid_op+0x18/0x70
? asm_exc_invalid_op+0x1a/0x20
? pci_bridge_secondary_bus_reset+0x5d/0x70
pci_reset_bus+0x1d8/0x270
vmd_probe+0x778/0xa10
pci_device_probe+0x95/0x120
Where pci_reset_bus() users are triggering unlocked secondary bus resets.
Ironically pci_bus_reset(), several calls down from pci_reset_bus(), uses
pci_bus_lock() before issuing the reset which locks everything *but* the
bridge itself.
For the same motivation as adding:
bridge = pci_upstream_bridge(dev);
if (bridge)
pci_dev_lock(bridge);
to pci_reset_function() for the "bus" and "cxl_bus" reset cases, add
pci_dev_lock() for @bus->self to pci_bus_lock().
[bhelgaas: squash in recursive locking deadlock fix from Keith Busch:
https://lore.kernel.org/r/20240711193650.701834-1-kbusch@meta.com] |
| In the Linux kernel, the following vulnerability has been resolved:
HID: cougar: fix slab-out-of-bounds Read in cougar_report_fixup
report_fixup for the Cougar 500k Gaming Keyboard was not verifying
that the report descriptor size was correct before accessing it |
| In the Linux kernel, the following vulnerability has been resolved:
Input: uinput - reject requests with unreasonable number of slots
When exercising uinput interface syzkaller may try setting up device
with a really large number of slots, which causes memory allocation
failure in input_mt_init_slots(). While this allocation failure is
handled properly and request is rejected, it results in syzkaller
reports. Additionally, such request may put undue burden on the
system which will try to free a lot of memory for a bogus request.
Fix it by limiting allowed number of slots to 100. This can easily
be extended if we see devices that can track more than 100 contacts. |
| In the Linux kernel, the following vulnerability has been resolved:
of/irq: Prevent device address out-of-bounds read in interrupt map walk
When of_irq_parse_raw() is invoked with a device address smaller than
the interrupt parent node (from #address-cells property), KASAN detects
the following out-of-bounds read when populating the initial match table
(dyndbg="func of_irq_parse_* +p"):
OF: of_irq_parse_one: dev=/soc@0/picasso/watchdog, index=0
OF: parent=/soc@0/pci@878000000000/gpio0@17,0, intsize=2
OF: intspec=4
OF: of_irq_parse_raw: ipar=/soc@0/pci@878000000000/gpio0@17,0, size=2
OF: -> addrsize=3
==================================================================
BUG: KASAN: slab-out-of-bounds in of_irq_parse_raw+0x2b8/0x8d0
Read of size 4 at addr ffffff81beca5608 by task bash/764
CPU: 1 PID: 764 Comm: bash Tainted: G O 6.1.67-484c613561-nokia_sm_arm64 #1
Hardware name: Unknown Unknown Product/Unknown Product, BIOS 2023.01-12.24.03-dirty 01/01/2023
Call trace:
dump_backtrace+0xdc/0x130
show_stack+0x1c/0x30
dump_stack_lvl+0x6c/0x84
print_report+0x150/0x448
kasan_report+0x98/0x140
__asan_load4+0x78/0xa0
of_irq_parse_raw+0x2b8/0x8d0
of_irq_parse_one+0x24c/0x270
parse_interrupts+0xc0/0x120
of_fwnode_add_links+0x100/0x2d0
fw_devlink_parse_fwtree+0x64/0xc0
device_add+0xb38/0xc30
of_device_add+0x64/0x90
of_platform_device_create_pdata+0xd0/0x170
of_platform_bus_create+0x244/0x600
of_platform_notify+0x1b0/0x254
blocking_notifier_call_chain+0x9c/0xd0
__of_changeset_entry_notify+0x1b8/0x230
__of_changeset_apply_notify+0x54/0xe4
of_overlay_fdt_apply+0xc04/0xd94
...
The buggy address belongs to the object at ffffff81beca5600
which belongs to the cache kmalloc-128 of size 128
The buggy address is located 8 bytes inside of
128-byte region [ffffff81beca5600, ffffff81beca5680)
The buggy address belongs to the physical page:
page:00000000230d3d03 refcount:1 mapcount:0 mapping:0000000000000000 index:0x0 pfn:0x1beca4
head:00000000230d3d03 order:1 compound_mapcount:0 compound_pincount:0
flags: 0x8000000000010200(slab|head|zone=2)
raw: 8000000000010200 0000000000000000 dead000000000122 ffffff810000c300
raw: 0000000000000000 0000000000200020 00000001ffffffff 0000000000000000
page dumped because: kasan: bad access detected
Memory state around the buggy address:
ffffff81beca5500: 04 fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc
ffffff81beca5580: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc
>ffffff81beca5600: 00 fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc
^
ffffff81beca5680: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc
ffffff81beca5700: 00 00 00 00 00 00 fc fc fc fc fc fc fc fc fc fc
==================================================================
OF: -> got it !
Prevent the out-of-bounds read by copying the device address into a
buffer of sufficient size. |
| In the Linux kernel, the following vulnerability has been resolved:
usb: dwc3: core: Prevent USB core invalid event buffer address access
This commit addresses an issue where the USB core could access an
invalid event buffer address during runtime suspend, potentially causing
SMMU faults and other memory issues in Exynos platforms. The problem
arises from the following sequence.
1. In dwc3_gadget_suspend, there is a chance of a timeout when
moving the USB core to the halt state after clearing the
run/stop bit by software.
2. In dwc3_core_exit, the event buffer is cleared regardless of
the USB core's status, which may lead to an SMMU faults and
other memory issues. if the USB core tries to access the event
buffer address.
To prevent this hardware quirk on Exynos platforms, this commit ensures
that the event buffer address is not cleared by software when the USB
core is active during runtime suspend by checking its status before
clearing the buffer address. |
| In the Linux kernel, the following vulnerability has been resolved:
gpio: prevent potential speculation leaks in gpio_device_get_desc()
Userspace may trigger a speculative read of an address outside the gpio
descriptor array.
Users can do that by calling gpio_ioctl() with an offset out of range.
Offset is copied from user and then used as an array index to get
the gpio descriptor without sanitization in gpio_device_get_desc().
This change ensures that the offset is sanitized by using
array_index_nospec() to mitigate any possibility of speculative
information leaks.
This bug was discovered and resolved using Coverity Static Analysis
Security Testing (SAST) by Synopsys, Inc. |
| In the Linux kernel, the following vulnerability has been resolved:
md/raid5: avoid BUG_ON() while continue reshape after reassembling
Currently, mdadm support --revert-reshape to abort the reshape while
reassembling, as the test 07revert-grow. However, following BUG_ON()
can be triggerred by the test:
kernel BUG at drivers/md/raid5.c:6278!
invalid opcode: 0000 [#1] PREEMPT SMP PTI
irq event stamp: 158985
CPU: 6 PID: 891 Comm: md0_reshape Not tainted 6.9.0-03335-g7592a0b0049a #94
RIP: 0010:reshape_request+0x3f1/0xe60
Call Trace:
<TASK>
raid5_sync_request+0x43d/0x550
md_do_sync+0xb7a/0x2110
md_thread+0x294/0x2b0
kthread+0x147/0x1c0
ret_from_fork+0x59/0x70
ret_from_fork_asm+0x1a/0x30
</TASK>
Root cause is that --revert-reshape update the raid_disks from 5 to 4,
while reshape position is still set, and after reassembling the array,
reshape position will be read from super block, then during reshape the
checking of 'writepos' that is caculated by old reshape position will
fail.
Fix this panic the easy way first, by converting the BUG_ON() to
WARN_ON(), and stop the reshape if checkings fail.
Noted that mdadm must fix --revert-shape as well, and probably md/raid
should enhance metadata validation as well, however this means
reassemble will fail and there must be user tools to fix the wrong
metadata. |
| In the Linux kernel, the following vulnerability has been resolved:
exec: Fix ToCToU between perm check and set-uid/gid usage
When opening a file for exec via do_filp_open(), permission checking is
done against the file's metadata at that moment, and on success, a file
pointer is passed back. Much later in the execve() code path, the file
metadata (specifically mode, uid, and gid) is used to determine if/how
to set the uid and gid. However, those values may have changed since the
permissions check, meaning the execution may gain unintended privileges.
For example, if a file could change permissions from executable and not
set-id:
---------x 1 root root 16048 Aug 7 13:16 target
to set-id and non-executable:
---S------ 1 root root 16048 Aug 7 13:16 target
it is possible to gain root privileges when execution should have been
disallowed.
While this race condition is rare in real-world scenarios, it has been
observed (and proven exploitable) when package managers are updating
the setuid bits of installed programs. Such files start with being
world-executable but then are adjusted to be group-exec with a set-uid
bit. For example, "chmod o-x,u+s target" makes "target" executable only
by uid "root" and gid "cdrom", while also becoming setuid-root:
-rwxr-xr-x 1 root cdrom 16048 Aug 7 13:16 target
becomes:
-rwsr-xr-- 1 root cdrom 16048 Aug 7 13:16 target
But racing the chmod means users without group "cdrom" membership can
get the permission to execute "target" just before the chmod, and when
the chmod finishes, the exec reaches brpm_fill_uid(), and performs the
setuid to root, violating the expressed authorization of "only cdrom
group members can setuid to root".
Re-check that we still have execute permissions in case the metadata
has changed. It would be better to keep a copy from the perm-check time,
but until we can do that refactoring, the least-bad option is to do a
full inode_permission() call (under inode lock). It is understood that
this is safe against dead-locks, but hardly optimal. |
| In the Linux kernel, the following vulnerability has been resolved:
dev/parport: fix the array out-of-bounds risk
Fixed array out-of-bounds issues caused by sprintf
by replacing it with snprintf for safer data copying,
ensuring the destination buffer is not overflowed.
Below is the stack trace I encountered during the actual issue:
[ 66.575408s] [pid:5118,cpu4,QThread,4]Kernel panic - not syncing: stack-protector:
Kernel stack is corrupted in: do_hardware_base_addr+0xcc/0xd0 [parport]
[ 66.575408s] [pid:5118,cpu4,QThread,5]CPU: 4 PID: 5118 Comm:
QThread Tainted: G S W O 5.10.97-arm64-desktop #7100.57021.2
[ 66.575439s] [pid:5118,cpu4,QThread,6]TGID: 5087 Comm: EFileApp
[ 66.575439s] [pid:5118,cpu4,QThread,7]Hardware name: HUAWEI HUAWEI QingYun
PGUX-W515x-B081/SP1PANGUXM, BIOS 1.00.07 04/29/2024
[ 66.575439s] [pid:5118,cpu4,QThread,8]Call trace:
[ 66.575469s] [pid:5118,cpu4,QThread,9] dump_backtrace+0x0/0x1c0
[ 66.575469s] [pid:5118,cpu4,QThread,0] show_stack+0x14/0x20
[ 66.575469s] [pid:5118,cpu4,QThread,1] dump_stack+0xd4/0x10c
[ 66.575500s] [pid:5118,cpu4,QThread,2] panic+0x1d8/0x3bc
[ 66.575500s] [pid:5118,cpu4,QThread,3] __stack_chk_fail+0x2c/0x38
[ 66.575500s] [pid:5118,cpu4,QThread,4] do_hardware_base_addr+0xcc/0xd0 [parport] |
| In the Linux kernel, the following vulnerability has been resolved:
protect the fetch of ->fd[fd] in do_dup2() from mispredictions
both callers have verified that fd is not greater than ->max_fds;
however, misprediction might end up with
tofree = fdt->fd[fd];
being speculatively executed. That's wrong for the same reasons
why it's wrong in close_fd()/file_close_fd_locked(); the same
solution applies - array_index_nospec(fd, fdt->max_fds) could differ
from fd only in case of speculative execution on mispredicted path. |
| In the Linux kernel, the following vulnerability has been resolved:
gpio: pca953x: fix pca953x_irq_bus_sync_unlock race
Ensure that `i2c_lock' is held when setting interrupt latch and mask in
pca953x_irq_bus_sync_unlock() in order to avoid races.
The other (non-probe) call site pca953x_gpio_set_multiple() ensures the
lock is held before calling pca953x_write_regs().
The problem occurred when a request raced against irq_bus_sync_unlock()
approximately once per thousand reboots on an i.MX8MP based system.
* Normal case
0-0022: write register AI|3a {03,02,00,00,01} Input latch P0
0-0022: write register AI|49 {fc,fd,ff,ff,fe} Interrupt mask P0
0-0022: write register AI|08 {ff,00,00,00,00} Output P3
0-0022: write register AI|12 {fc,00,00,00,00} Config P3
* Race case
0-0022: write register AI|08 {ff,00,00,00,00} Output P3
0-0022: write register AI|08 {03,02,00,00,01} *** Wrong register ***
0-0022: write register AI|12 {fc,00,00,00,00} Config P3
0-0022: write register AI|49 {fc,fd,ff,ff,fe} Interrupt mask P0 |
| In the Linux kernel, the following vulnerability has been resolved:
mm: avoid overflows in dirty throttling logic
The dirty throttling logic is interspersed with assumptions that dirty
limits in PAGE_SIZE units fit into 32-bit (so that various multiplications
fit into 64-bits). If limits end up being larger, we will hit overflows,
possible divisions by 0 etc. Fix these problems by never allowing so
large dirty limits as they have dubious practical value anyway. For
dirty_bytes / dirty_background_bytes interfaces we can just refuse to set
so large limits. For dirty_ratio / dirty_background_ratio it isn't so
simple as the dirty limit is computed from the amount of available memory
which can change due to memory hotplug etc. So when converting dirty
limits from ratios to numbers of pages, we just don't allow the result to
exceed UINT_MAX.
This is root-only triggerable problem which occurs when the operator
sets dirty limits to >16 TB. |
| In the Linux kernel, the following vulnerability has been resolved:
net/iucv: Avoid explicit cpumask var allocation on stack
For CONFIG_CPUMASK_OFFSTACK=y kernel, explicit allocation of cpumask
variable on stack is not recommended since it can cause potential stack
overflow.
Instead, kernel code should always use *cpumask_var API(s) to allocate
cpumask var in config-neutral way, leaving allocation strategy to
CONFIG_CPUMASK_OFFSTACK.
Use *cpumask_var API(s) to address it. |
| In the Linux kernel, the following vulnerability has been resolved:
gfs2: Fix NULL pointer dereference in gfs2_log_flush
In gfs2_jindex_free(), set sdp->sd_jdesc to NULL under the log flush
lock to provide exclusion against gfs2_log_flush().
In gfs2_log_flush(), check if sdp->sd_jdesc is non-NULL before
dereferencing it. Otherwise, we could run into a NULL pointer
dereference when outstanding glock work races with an unmount
(glock_work_func -> run_queue -> do_xmote -> inode_go_sync ->
gfs2_log_flush). |
| In the Linux kernel, the following vulnerability has been resolved:
drm/nouveau/dispnv04: fix null pointer dereference in nv17_tv_get_ld_modes
In nv17_tv_get_ld_modes(), the return value of drm_mode_duplicate() is
assigned to mode, which will lead to a possible NULL pointer dereference
on failure of drm_mode_duplicate(). Add a check to avoid npd. |