Search Results (6881 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2024-57979 2 Linux, Redhat 2 Linux Kernel, Enterprise Linux 2025-11-03 7.8 High
In the Linux kernel, the following vulnerability has been resolved: pps: Fix a use-after-free On a board running ntpd and gpsd, I'm seeing a consistent use-after-free in sys_exit() from gpsd when rebooting: pps pps1: removed ------------[ cut here ]------------ kobject: '(null)' (00000000db4bec24): is not initialized, yet kobject_put() is being called. WARNING: CPU: 2 PID: 440 at lib/kobject.c:734 kobject_put+0x120/0x150 CPU: 2 UID: 299 PID: 440 Comm: gpsd Not tainted 6.11.0-rc6-00308-gb31c44928842 #1 Hardware name: Raspberry Pi 4 Model B Rev 1.1 (DT) pstate: 60000005 (nZCv daif -PAN -UAO -TCO -DIT -SSBS BTYPE=--) pc : kobject_put+0x120/0x150 lr : kobject_put+0x120/0x150 sp : ffffffc0803d3ae0 x29: ffffffc0803d3ae0 x28: ffffff8042dc9738 x27: 0000000000000001 x26: 0000000000000000 x25: ffffff8042dc9040 x24: ffffff8042dc9440 x23: ffffff80402a4620 x22: ffffff8042ef4bd0 x21: ffffff80405cb600 x20: 000000000008001b x19: ffffff8040b3b6e0 x18: 0000000000000000 x17: 0000000000000000 x16: 0000000000000000 x15: 696e6920746f6e20 x14: 7369203a29343263 x13: 205d303434542020 x12: 0000000000000000 x11: 0000000000000000 x10: 0000000000000000 x9 : 0000000000000000 x8 : 0000000000000000 x7 : 0000000000000000 x6 : 0000000000000000 x5 : 0000000000000000 x4 : 0000000000000000 x3 : 0000000000000000 x2 : 0000000000000000 x1 : 0000000000000000 x0 : 0000000000000000 Call trace: kobject_put+0x120/0x150 cdev_put+0x20/0x3c __fput+0x2c4/0x2d8 ____fput+0x1c/0x38 task_work_run+0x70/0xfc do_exit+0x2a0/0x924 do_group_exit+0x34/0x90 get_signal+0x7fc/0x8c0 do_signal+0x128/0x13b4 do_notify_resume+0xdc/0x160 el0_svc+0xd4/0xf8 el0t_64_sync_handler+0x140/0x14c el0t_64_sync+0x190/0x194 ---[ end trace 0000000000000000 ]--- ...followed by more symptoms of corruption, with similar stacks: refcount_t: underflow; use-after-free. kernel BUG at lib/list_debug.c:62! Kernel panic - not syncing: Oops - BUG: Fatal exception This happens because pps_device_destruct() frees the pps_device with the embedded cdev immediately after calling cdev_del(), but, as the comment above cdev_del() notes, fops for previously opened cdevs are still callable even after cdev_del() returns. I think this bug has always been there: I can't explain why it suddenly started happening every time I reboot this particular board. In commit d953e0e837e6 ("pps: Fix a use-after free bug when unregistering a source."), George Spelvin suggested removing the embedded cdev. That seems like the simplest way to fix this, so I've implemented his suggestion, using __register_chrdev() with pps_idr becoming the source of truth for which minor corresponds to which device. But now that pps_idr defines userspace visibility instead of cdev_add(), we need to be sure the pps->dev refcount can't reach zero while userspace can still find it again. So, the idr_remove() call moves to pps_unregister_cdev(), and pps_idr now holds a reference to pps->dev. pps_core: source serial1 got cdev (251:1) <...> pps pps1: removed pps_core: unregistering pps1 pps_core: deallocating pps1
CVE-2024-54458 1 Linux 1 Linux Kernel 2025-11-03 7.8 High
In the Linux kernel, the following vulnerability has been resolved: scsi: ufs: bsg: Set bsg_queue to NULL after removal Currently, this does not cause any issues, but I believe it is necessary to set bsg_queue to NULL after removing it to prevent potential use-after-free (UAF) access.
CVE-2024-53166 2 Linux, Redhat 2 Linux Kernel, Enterprise Linux 2025-11-03 7.8 High
In the Linux kernel, the following vulnerability has been resolved: block, bfq: fix bfqq uaf in bfq_limit_depth() Set new allocated bfqq to bic or remove freed bfqq from bic are both protected by bfqd->lock, however bfq_limit_depth() is deferencing bfqq from bic without the lock, this can lead to UAF if the io_context is shared by multiple tasks. For example, test bfq with io_uring can trigger following UAF in v6.6: ================================================================== BUG: KASAN: slab-use-after-free in bfqq_group+0x15/0x50 Call Trace: <TASK> dump_stack_lvl+0x47/0x80 print_address_description.constprop.0+0x66/0x300 print_report+0x3e/0x70 kasan_report+0xb4/0xf0 bfqq_group+0x15/0x50 bfqq_request_over_limit+0x130/0x9a0 bfq_limit_depth+0x1b5/0x480 __blk_mq_alloc_requests+0x2b5/0xa00 blk_mq_get_new_requests+0x11d/0x1d0 blk_mq_submit_bio+0x286/0xb00 submit_bio_noacct_nocheck+0x331/0x400 __block_write_full_folio+0x3d0/0x640 writepage_cb+0x3b/0xc0 write_cache_pages+0x254/0x6c0 write_cache_pages+0x254/0x6c0 do_writepages+0x192/0x310 filemap_fdatawrite_wbc+0x95/0xc0 __filemap_fdatawrite_range+0x99/0xd0 filemap_write_and_wait_range.part.0+0x4d/0xa0 blkdev_read_iter+0xef/0x1e0 io_read+0x1b6/0x8a0 io_issue_sqe+0x87/0x300 io_wq_submit_work+0xeb/0x390 io_worker_handle_work+0x24d/0x550 io_wq_worker+0x27f/0x6c0 ret_from_fork_asm+0x1b/0x30 </TASK> Allocated by task 808602: kasan_save_stack+0x1e/0x40 kasan_set_track+0x21/0x30 __kasan_slab_alloc+0x83/0x90 kmem_cache_alloc_node+0x1b1/0x6d0 bfq_get_queue+0x138/0xfa0 bfq_get_bfqq_handle_split+0xe3/0x2c0 bfq_init_rq+0x196/0xbb0 bfq_insert_request.isra.0+0xb5/0x480 bfq_insert_requests+0x156/0x180 blk_mq_insert_request+0x15d/0x440 blk_mq_submit_bio+0x8a4/0xb00 submit_bio_noacct_nocheck+0x331/0x400 __blkdev_direct_IO_async+0x2dd/0x330 blkdev_write_iter+0x39a/0x450 io_write+0x22a/0x840 io_issue_sqe+0x87/0x300 io_wq_submit_work+0xeb/0x390 io_worker_handle_work+0x24d/0x550 io_wq_worker+0x27f/0x6c0 ret_from_fork+0x2d/0x50 ret_from_fork_asm+0x1b/0x30 Freed by task 808589: kasan_save_stack+0x1e/0x40 kasan_set_track+0x21/0x30 kasan_save_free_info+0x27/0x40 __kasan_slab_free+0x126/0x1b0 kmem_cache_free+0x10c/0x750 bfq_put_queue+0x2dd/0x770 __bfq_insert_request.isra.0+0x155/0x7a0 bfq_insert_request.isra.0+0x122/0x480 bfq_insert_requests+0x156/0x180 blk_mq_dispatch_plug_list+0x528/0x7e0 blk_mq_flush_plug_list.part.0+0xe5/0x590 __blk_flush_plug+0x3b/0x90 blk_finish_plug+0x40/0x60 do_writepages+0x19d/0x310 filemap_fdatawrite_wbc+0x95/0xc0 __filemap_fdatawrite_range+0x99/0xd0 filemap_write_and_wait_range.part.0+0x4d/0xa0 blkdev_read_iter+0xef/0x1e0 io_read+0x1b6/0x8a0 io_issue_sqe+0x87/0x300 io_wq_submit_work+0xeb/0x390 io_worker_handle_work+0x24d/0x550 io_wq_worker+0x27f/0x6c0 ret_from_fork+0x2d/0x50 ret_from_fork_asm+0x1b/0x30 Fix the problem by protecting bic_to_bfqq() with bfqd->lock.
CVE-2024-50061 1 Linux 1 Linux Kernel 2025-11-03 7.0 High
In the Linux kernel, the following vulnerability has been resolved: i3c: master: cdns: Fix use after free vulnerability in cdns_i3c_master Driver Due to Race Condition In the cdns_i3c_master_probe function, &master->hj_work is bound with cdns_i3c_master_hj. And cdns_i3c_master_interrupt can call cnds_i3c_master_demux_ibis function to start the work. If we remove the module which will call cdns_i3c_master_remove to make cleanup, it will free master->base through i3c_master_unregister while the work mentioned above will be used. The sequence of operations that may lead to a UAF bug is as follows: CPU0 CPU1 | cdns_i3c_master_hj cdns_i3c_master_remove | i3c_master_unregister(&master->base) | device_unregister(&master->dev) | device_release | //free master->base | | i3c_master_do_daa(&master->base) | //use master->base Fix it by ensuring that the work is canceled before proceeding with the cleanup in cdns_i3c_master_remove.
CVE-2024-26656 2 Linux, Redhat 6 Linux Kernel, Enterprise Linux, Rhel Aus and 3 more 2025-11-03 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: drm/amdgpu: fix use-after-free bug The bug can be triggered by sending a single amdgpu_gem_userptr_ioctl to the AMDGPU DRM driver on any ASICs with an invalid address and size. The bug was reported by Joonkyo Jung <joonkyoj@yonsei.ac.kr>. For example the following code: static void Syzkaller1(int fd) { struct drm_amdgpu_gem_userptr arg; int ret; arg.addr = 0xffffffffffff0000; arg.size = 0x80000000; /*2 Gb*/ arg.flags = 0x7; ret = drmIoctl(fd, 0xc1186451/*amdgpu_gem_userptr_ioctl*/, &arg); } Due to the address and size are not valid there is a failure in amdgpu_hmm_register->mmu_interval_notifier_insert->__mmu_interval_notifier_insert-> check_shl_overflow, but we even the amdgpu_hmm_register failure we still call amdgpu_hmm_unregister into amdgpu_gem_object_free which causes access to a bad address. The following stack is below when the issue is reproduced when Kazan is enabled: [ +0.000014] Hardware name: ASUS System Product Name/ROG STRIX B550-F GAMING (WI-FI), BIOS 1401 12/03/2020 [ +0.000009] RIP: 0010:mmu_interval_notifier_remove+0x327/0x340 [ +0.000017] Code: ff ff 49 89 44 24 08 48 b8 00 01 00 00 00 00 ad de 4c 89 f7 49 89 47 40 48 83 c0 22 49 89 47 48 e8 ce d1 2d 01 e9 32 ff ff ff <0f> 0b e9 16 ff ff ff 4c 89 ef e8 fa 14 b3 ff e9 36 ff ff ff e8 80 [ +0.000014] RSP: 0018:ffffc90002657988 EFLAGS: 00010246 [ +0.000013] RAX: 0000000000000000 RBX: 1ffff920004caf35 RCX: ffffffff8160565b [ +0.000011] RDX: dffffc0000000000 RSI: 0000000000000004 RDI: ffff8881a9f78260 [ +0.000010] RBP: ffffc90002657a70 R08: 0000000000000001 R09: fffff520004caf25 [ +0.000010] R10: 0000000000000003 R11: ffffffff8161d1d6 R12: ffff88810e988c00 [ +0.000010] R13: ffff888126fb5a00 R14: ffff88810e988c0c R15: ffff8881a9f78260 [ +0.000011] FS: 00007ff9ec848540(0000) GS:ffff8883cc880000(0000) knlGS:0000000000000000 [ +0.000012] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ +0.000010] CR2: 000055b3f7e14328 CR3: 00000001b5770000 CR4: 0000000000350ef0 [ +0.000010] Call Trace: [ +0.000006] <TASK> [ +0.000007] ? show_regs+0x6a/0x80 [ +0.000018] ? __warn+0xa5/0x1b0 [ +0.000019] ? mmu_interval_notifier_remove+0x327/0x340 [ +0.000018] ? report_bug+0x24a/0x290 [ +0.000022] ? handle_bug+0x46/0x90 [ +0.000015] ? exc_invalid_op+0x19/0x50 [ +0.000016] ? asm_exc_invalid_op+0x1b/0x20 [ +0.000017] ? kasan_save_stack+0x26/0x50 [ +0.000017] ? mmu_interval_notifier_remove+0x23b/0x340 [ +0.000019] ? mmu_interval_notifier_remove+0x327/0x340 [ +0.000019] ? mmu_interval_notifier_remove+0x23b/0x340 [ +0.000020] ? __pfx_mmu_interval_notifier_remove+0x10/0x10 [ +0.000017] ? kasan_save_alloc_info+0x1e/0x30 [ +0.000018] ? srso_return_thunk+0x5/0x5f [ +0.000014] ? __kasan_kmalloc+0xb1/0xc0 [ +0.000018] ? srso_return_thunk+0x5/0x5f [ +0.000013] ? __kasan_check_read+0x11/0x20 [ +0.000020] amdgpu_hmm_unregister+0x34/0x50 [amdgpu] [ +0.004695] amdgpu_gem_object_free+0x66/0xa0 [amdgpu] [ +0.004534] ? __pfx_amdgpu_gem_object_free+0x10/0x10 [amdgpu] [ +0.004291] ? do_syscall_64+0x5f/0xe0 [ +0.000023] ? srso_return_thunk+0x5/0x5f [ +0.000017] drm_gem_object_free+0x3b/0x50 [drm] [ +0.000489] amdgpu_gem_userptr_ioctl+0x306/0x500 [amdgpu] [ +0.004295] ? __pfx_amdgpu_gem_userptr_ioctl+0x10/0x10 [amdgpu] [ +0.004270] ? srso_return_thunk+0x5/0x5f [ +0.000014] ? __this_cpu_preempt_check+0x13/0x20 [ +0.000015] ? srso_return_thunk+0x5/0x5f [ +0.000013] ? sysvec_apic_timer_interrupt+0x57/0xc0 [ +0.000020] ? srso_return_thunk+0x5/0x5f [ +0.000014] ? asm_sysvec_apic_timer_interrupt+0x1b/0x20 [ +0.000022] ? drm_ioctl_kernel+0x17b/0x1f0 [drm] [ +0.000496] ? __pfx_amdgpu_gem_userptr_ioctl+0x10/0x10 [amdgpu] [ +0.004272] ? drm_ioctl_kernel+0x190/0x1f0 [drm] [ +0.000492] drm_ioctl_kernel+0x140/0x1f0 [drm] [ +0.000497] ? __pfx_amdgpu_gem_userptr_ioctl+0x10/0x10 [amdgpu] [ +0.004297] ? __pfx_drm_ioctl_kernel+0x10/0x10 [d ---truncated---
CVE-2022-3534 1 Linux 1 Linux Kernel 2025-11-03 5.5 Medium
A vulnerability classified as critical has been found in Linux Kernel. Affected is the function btf_dump_name_dups of the file tools/lib/bpf/btf_dump.c of the component libbpf. The manipulation leads to use after free. It is recommended to apply a patch to fix this issue. The identifier of this vulnerability is VDB-211032.
CVE-2021-36055 2 Adobe, Debian 2 Xmp Toolkit Software Development Kit, Debian Linux 2025-11-03 7.8 High
XMP Toolkit SDK versions 2020.1 (and earlier) are affected by a use-after-free vulnerability that could result in arbitrary code execution in the context of the current user. Exploitation of this issue requires user interaction in that a victim must open a malicious file.
CVE-2025-62788 1 Wazuh 1 Wazuh 2025-11-03 7.5 High
Wazuh is a free and open source platform used for threat prevention, detection, and response. Prior to 4.11.0, w_copy_event_for_log() references memory (initially allocated in OS_CleanMSG()) after it has been freed. A compromised agent can potentially compromise the integrity of the application by sending a specially crafted message to the wazuh manager. An attacker who is able to craft and send an agent message to the wazuh manager can leverage this issue to potentially compromise the integrity of the application (the use of previously freed memory may corrupt valid data, if the memory area in question has been allocated and used properly elsewhere). This vulnerability is fixed in 4.11.0.
CVE-2025-54257 3 Adobe, Apple, Microsoft 6 Acrobat, Acrobat Dc, Acrobat Reader and 3 more 2025-11-03 7.8 High
Acrobat Reader versions 24.001.30254, 20.005.30774, 25.001.20672 and earlier are affected by a Use After Free vulnerability that could result in arbitrary code execution in the context of the current user. Exploitation of this issue requires user interaction in that a victim must open a malicious file, and scope is unchanged.
CVE-2025-10527 2 Mozilla, Redhat 4 Firefox, Firefox Esr, Thunderbird and 1 more 2025-11-03 7.1 High
Sandbox escape due to use-after-free in the Graphics: Canvas2D component. This vulnerability affects Firefox < 143, Firefox ESR < 140.3, Thunderbird < 143, and Thunderbird < 140.3.
CVE-2020-21896 1 Artifex 1 Mupdf 2025-11-03 5.5 Medium
A Use After Free vulnerability in svg_dev_text_span_as_paths_defs function in source/fitz/svg-device.c in Artifex Software MuPDF 1.16.0 allows remote attackers to cause a denial of service via opening of a crafted PDF file.
CVE-2025-11708 1 Mozilla 3 Firefox, Firefox Esr, Thunderbird 2025-11-03 9.8 Critical
Use-after-free in MediaTrackGraphImpl::GetInstance() This vulnerability affects Firefox < 144, Firefox ESR < 140.4, Thunderbird < 144, and Thunderbird < 140.4.
CVE-2022-38181 1 Arm 3 Bifrost Gpu Kernel Driver, Midgard Gpu Kernel Driver, Valhall Gpu Kernel Driver 2025-11-03 8.8 High
The Arm Mali GPU kernel driver allows unprivileged users to access freed memory because GPU memory operations are mishandled. This affects Bifrost r0p0 through r38p1, and r39p0; Valhall r19p0 through r38p1, and r39p0; and Midgard r4p0 through r32p0.
CVE-2021-29256 1 Arm 3 Bifrost Gpu Kernel Driver, Midgard Gpu Kernel Driver, Valhall Gpu Kernel Driver 2025-11-03 8.8 High
. The Arm Mali GPU kernel driver allows an unprivileged user to achieve access to freed memory, leading to information disclosure or root privilege escalation. This affects Bifrost r16p0 through r29p0 before r30p0, Valhall r19p0 through r29p0 before r30p0, and Midgard r28p0 through r30p0.
CVE-2021-28663 1 Arm 3 Bifrost Gpu Kernel Driver, Midgard Gpu Kernel Driver, Valhall Gpu Kernel Driver 2025-11-03 8.8 High
The Arm Mali GPU kernel driver allows privilege escalation or information disclosure because GPU memory operations are mishandled, leading to a use-after-free. This affects Bifrost r0p0 through r28p0 before r29p0, Valhall r19p0 through r28p0 before r29p0, and Midgard r4p0 through r30p0.
CVE-2024-57995 1 Linux 1 Linux Kernel 2025-11-02 7.8 High
In the Linux kernel, the following vulnerability has been resolved: wifi: ath12k: fix read pointer after free in ath12k_mac_assign_vif_to_vdev() In ath12k_mac_assign_vif_to_vdev(), if arvif is created on a different radio, it gets deleted from that radio through a call to ath12k_mac_unassign_link_vif(). This action frees the arvif pointer. Subsequently, there is a check involving arvif, which will result in a read-after-free scenario. Fix this by moving this check after arvif is again assigned via call to ath12k_mac_assign_link_vif(). Tested-on: QCN9274 hw2.0 PCI WLAN.WBE.1.3.1-00173-QCAHKSWPL_SILICONZ-1
CVE-2025-22083 1 Linux 1 Linux Kernel 2025-10-31 7.8 High
In the Linux kernel, the following vulnerability has been resolved: vhost-scsi: Fix handling of multiple calls to vhost_scsi_set_endpoint If vhost_scsi_set_endpoint is called multiple times without a vhost_scsi_clear_endpoint between them, we can hit multiple bugs found by Haoran Zhang: 1. Use-after-free when no tpgs are found: This fixes a use after free that occurs when vhost_scsi_set_endpoint is called more than once and calls after the first call do not find any tpgs to add to the vs_tpg. When vhost_scsi_set_endpoint first finds tpgs to add to the vs_tpg array match=true, so we will do: vhost_vq_set_backend(vq, vs_tpg); ... kfree(vs->vs_tpg); vs->vs_tpg = vs_tpg; If vhost_scsi_set_endpoint is called again and no tpgs are found match=false so we skip the vhost_vq_set_backend call leaving the pointer to the vs_tpg we then free via: kfree(vs->vs_tpg); vs->vs_tpg = vs_tpg; If a scsi request is then sent we do: vhost_scsi_handle_vq -> vhost_scsi_get_req -> vhost_vq_get_backend which sees the vs_tpg we just did a kfree on. 2. Tpg dir removal hang: This patch fixes an issue where we cannot remove a LIO/target layer tpg (and structs above it like the target) dir due to the refcount dropping to -1. The problem is that if vhost_scsi_set_endpoint detects a tpg is already in the vs->vs_tpg array or if the tpg has been removed so target_depend_item fails, the undepend goto handler will do target_undepend_item on all tpgs in the vs_tpg array dropping their refcount to 0. At this time vs_tpg contains both the tpgs we have added in the current vhost_scsi_set_endpoint call as well as tpgs we added in previous calls which are also in vs->vs_tpg. Later, when vhost_scsi_clear_endpoint runs it will do target_undepend_item on all the tpgs in the vs->vs_tpg which will drop their refcount to -1. Userspace will then not be able to remove the tpg and will hang when it tries to do rmdir on the tpg dir. 3. Tpg leak: This fixes a bug where we can leak tpgs and cause them to be un-removable because the target name is overwritten when vhost_scsi_set_endpoint is called multiple times but with different target names. The bug occurs if a user has called VHOST_SCSI_SET_ENDPOINT and setup a vhost-scsi device to target/tpg mapping, then calls VHOST_SCSI_SET_ENDPOINT again with a new target name that has tpgs we haven't seen before (target1 has tpg1 but target2 has tpg2). When this happens we don't teardown the old target tpg mapping and just overwrite the target name and the vs->vs_tpg array. Later when we do vhost_scsi_clear_endpoint, we are passed in either target1 or target2's name and we will only match that target's tpgs when we loop over the vs->vs_tpg. We will then return from the function without doing target_undepend_item on the tpgs. Because of all these bugs, it looks like being able to call vhost_scsi_set_endpoint multiple times was never supported. The major user, QEMU, already has checks to prevent this use case. So to fix the issues, this patch prevents vhost_scsi_set_endpoint from being called if it's already successfully added tpgs. To add, remove or change the tpg config or target name, you must do a vhost_scsi_clear_endpoint first.
CVE-2025-22077 1 Linux 1 Linux Kernel 2025-10-31 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: Revert "smb: client: fix TCP timers deadlock after rmmod" This reverts commit e9f2517a3e18a54a3943c098d2226b245d488801. Commit e9f2517a3e18 ("smb: client: fix TCP timers deadlock after rmmod") is intended to fix a null-ptr-deref in LOCKDEP, which is mentioned as CVE-2024-54680, but is actually did not fix anything; The issue can be reproduced on top of it. [0] Also, it reverted the change by commit ef7134c7fc48 ("smb: client: Fix use-after-free of network namespace.") and introduced a real issue by reviving the kernel TCP socket. When a reconnect happens for a CIFS connection, the socket state transitions to FIN_WAIT_1. Then, inet_csk_clear_xmit_timers_sync() in tcp_close() stops all timers for the socket. If an incoming FIN packet is lost, the socket will stay at FIN_WAIT_1 forever, and such sockets could be leaked up to net.ipv4.tcp_max_orphans. Usually, FIN can be retransmitted by the peer, but if the peer aborts the connection, the issue comes into reality. I warned about this privately by pointing out the exact report [1], but the bogus fix was finally merged. So, we should not stop the timers to finally kill the connection on our side in that case, meaning we must not use a kernel socket for TCP whose sk->sk_net_refcnt is 0. The kernel socket does not have a reference to its netns to make it possible to tear down netns without cleaning up every resource in it. For example, tunnel devices use a UDP socket internally, but we can destroy netns without removing such devices and let it complete during exit. Otherwise, netns would be leaked when the last application died. However, this is problematic for TCP sockets because TCP has timers to close the connection gracefully even after the socket is close()d. The lifetime of the socket and its netns is different from the lifetime of the underlying connection. If the socket user does not maintain the netns lifetime, the timer could be fired after the socket is close()d and its netns is freed up, resulting in use-after-free. Actually, we have seen so many similar issues and converted such sockets to have a reference to netns. That's why I converted the CIFS client socket to have a reference to netns (sk->sk_net_refcnt == 1), which is somehow mentioned as out-of-scope of CIFS and technically wrong in e9f2517a3e18, but **is in-scope and right fix**. Regarding the LOCKDEP issue, we can prevent the module unload by bumping the module refcount when switching the LOCKDDEP key in sock_lock_init_class_and_name(). [2] For a while, let's revert the bogus fix. Note that now we can use sk_net_refcnt_upgrade() for the socket conversion, but I'll do so later separately to make backport easy.
CVE-2025-37786 1 Linux 1 Linux Kernel 2025-10-31 7.8 High
In the Linux kernel, the following vulnerability has been resolved: net: dsa: free routing table on probe failure If complete = true in dsa_tree_setup(), it means that we are the last switch of the tree which is successfully probing, and we should be setting up all switches from our probe path. After "complete" becomes true, dsa_tree_setup_cpu_ports() or any subsequent function may fail. If that happens, the entire tree setup is in limbo: the first N-1 switches have successfully finished probing (doing nothing but having allocated persistent memory in the tree's dst->ports, and maybe dst->rtable), and switch N failed to probe, ending the tree setup process before anything is tangible from the user's PoV. If switch N fails to probe, its memory (ports) will be freed and removed from dst->ports. However, the dst->rtable elements pointing to its ports, as created by dsa_link_touch(), will remain there, and will lead to use-after-free if dereferenced. If dsa_tree_setup_switches() returns -EPROBE_DEFER, which is entirely possible because that is where ds->ops->setup() is, we get a kasan report like this: ================================================================== BUG: KASAN: slab-use-after-free in mv88e6xxx_setup_upstream_port+0x240/0x568 Read of size 8 at addr ffff000004f56020 by task kworker/u8:3/42 Call trace: __asan_report_load8_noabort+0x20/0x30 mv88e6xxx_setup_upstream_port+0x240/0x568 mv88e6xxx_setup+0xebc/0x1eb0 dsa_register_switch+0x1af4/0x2ae0 mv88e6xxx_register_switch+0x1b8/0x2a8 mv88e6xxx_probe+0xc4c/0xf60 mdio_probe+0x78/0xb8 really_probe+0x2b8/0x5a8 __driver_probe_device+0x164/0x298 driver_probe_device+0x78/0x258 __device_attach_driver+0x274/0x350 Allocated by task 42: __kasan_kmalloc+0x84/0xa0 __kmalloc_cache_noprof+0x298/0x490 dsa_switch_touch_ports+0x174/0x3d8 dsa_register_switch+0x800/0x2ae0 mv88e6xxx_register_switch+0x1b8/0x2a8 mv88e6xxx_probe+0xc4c/0xf60 mdio_probe+0x78/0xb8 really_probe+0x2b8/0x5a8 __driver_probe_device+0x164/0x298 driver_probe_device+0x78/0x258 __device_attach_driver+0x274/0x350 Freed by task 42: __kasan_slab_free+0x48/0x68 kfree+0x138/0x418 dsa_register_switch+0x2694/0x2ae0 mv88e6xxx_register_switch+0x1b8/0x2a8 mv88e6xxx_probe+0xc4c/0xf60 mdio_probe+0x78/0xb8 really_probe+0x2b8/0x5a8 __driver_probe_device+0x164/0x298 driver_probe_device+0x78/0x258 __device_attach_driver+0x274/0x350 The simplest way to fix the bug is to delete the routing table in its entirety. dsa_tree_setup_routing_table() has no problem in regenerating it even if we deleted links between ports other than those of switch N, because dsa_link_touch() first checks whether the port pair already exists in dst->rtable, allocating if not. The deletion of the routing table in its entirety already exists in dsa_tree_teardown(), so refactor that into a function that can also be called from the tree setup error path. In my analysis of the commit to blame, it is the one which added dsa_link elements to dst->rtable. Prior to that, each switch had its own ds->rtable which is freed when the switch fails to probe. But the tree is potentially persistent memory.
CVE-2025-21896 1 Linux 1 Linux Kernel 2025-10-31 7.8 High
In the Linux kernel, the following vulnerability has been resolved: fuse: revert back to __readahead_folio() for readahead In commit 3eab9d7bc2f4 ("fuse: convert readahead to use folios"), the logic was converted to using the new folio readahead code, which drops the reference on the folio once it is locked, using an inferred reference on the folio. Previously we held a reference on the folio for the entire duration of the readpages call. This is fine, however for the case for splice pipe responses where we will remove the old folio and splice in the new folio (see fuse_try_move_page()), we assume that there is a reference held on the folio for ap->folios, which is no longer the case. To fix this, revert back to __readahead_folio() which allows us to hold the reference on the folio for the duration of readpages until either we drop the reference ourselves in fuse_readpages_end() or the reference is dropped after it's replaced in the page cache in the splice case. This will fix the UAF bug that was reported.