| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| FRRouting/frr from v4.0 through v10.4.1 was discovered to contain a NULL pointer dereference via the show_vty_ext_link_lan_adj_sid function at ospf_ext.c. This vulnerability allows attackers to cause a Denial of Service (DoS) via a crafted OSPF packet. |
| FRRouting/frr from v4.0 through v10.4.1 was discovered to contain a NULL pointer dereference via the show_vty_unknown_tlv function at ospf_ext.c. This vulnerability allows attackers to cause a Denial of Service (DoS) via a crafted OSPF packet. |
| FRRouting/frr from v4.0 through v10.4.1 was discovered to contain a NULL pointer dereference via the show_vty_ext_pref_pref_sid function at ospf_ext.c. This vulnerability allows attackers to cause a Denial of Service (DoS) via a crafted OSPF packet. |
| FRRouting/frr from v4.0 through v10.4.1 was discovered to contain a NULL pointer dereference via the show_vty_ext_pref_pref_sid function at ospf_ext.c. This vulnerability allows attackers to cause a Denial of Service (DoS) via a crafted LSA Update packet. |
| A missing validation check in FreeRTOS-Plus-TCP's UDP/IPv6 packet processing code can lead to an invalid pointer dereference when receiving a UDP/IPv6 packet with an incorrect IP version field in the packet header. This issue only affects applications using IPv6.
We recommend upgrading to the latest version and ensure any forked or derivative code is patched to incorporate the new fixes. |
| In the Linux kernel, the following vulnerability has been resolved:
net: ethtool: netlink: Allow NULL nlattrs when getting a phy_device
ethnl_req_get_phydev() is used to lookup a phy_device, in the case an
ethtool netlink command targets a specific phydev within a netdev's
topology.
It takes as a parameter a const struct nlattr *header that's used for
error handling :
if (!phydev) {
NL_SET_ERR_MSG_ATTR(extack, header,
"no phy matching phyindex");
return ERR_PTR(-ENODEV);
}
In the notify path after a ->set operation however, there's no request
attributes available.
The typical callsite for the above function looks like:
phydev = ethnl_req_get_phydev(req_base, tb[ETHTOOL_A_XXX_HEADER],
info->extack);
So, when tb is NULL (such as in the ethnl notify path), we have a nice
crash.
It turns out that there's only the PLCA command that is in that case, as
the other phydev-specific commands don't have a notification.
This commit fixes the crash by passing the cmd index and the nlattr
array separately, allowing NULL-checking it directly inside the helper. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/fbdev-dma: Add shadow buffering for deferred I/O
DMA areas are not necessarily backed by struct page, so we cannot
rely on it for deferred I/O. Allocate a shadow buffer for drivers
that require deferred I/O and use it as framebuffer memory.
Fixes driver errors about being "Unable to handle kernel NULL pointer
dereference at virtual address" or "Unable to handle kernel paging
request at virtual address".
The patch splits drm_fbdev_dma_driver_fbdev_probe() in an initial
allocation, which creates the DMA-backed buffer object, and a tail
that sets up the fbdev data structures. There is a tail function for
direct memory mappings and a tail function for deferred I/O with
the shadow buffer.
It is no longer possible to use deferred I/O without shadow buffer.
It can be re-added if there exists a reliably test for usable struct
page in the allocated DMA-backed buffer object. |
| Multiple versions of Central Monitor CNS-6201 contain a NULL pointer dereference vulnerability. When processing a crafted certain UDP packet, the affected device may abnormally terminate. |
| A vulnerability was detected in DCMTK up to 3.6.7. The impacted element is the function DcmQueryRetrieveConfig::readPeerList of the file /dcmqrcnf.cc of the component dcmqrscp. The manipulation results in null pointer dereference. The attack needs to be approached locally. The exploit is now public and may be used. Upgrading to version 3.6.8 is sufficient to resolve this issue. The patch is identified as 957fb31e5. Upgrading the affected component is advised. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/xe/hmm: Don't dereference struct page pointers without notifier lock
The pnfs that we obtain from hmm_range_fault() point to pages that
we don't have a reference on, and the guarantee that they are still
in the cpu page-tables is that the notifier lock must be held and the
notifier seqno is still valid.
So while building the sg table and marking the pages accesses / dirty
we need to hold this lock with a validated seqno.
However, the lock is reclaim tainted which makes
sg_alloc_table_from_pages_segment() unusable, since it internally
allocates memory.
Instead build the sg-table manually. For the non-iommu case
this might lead to fewer coalesces, but if that's a problem it can
be fixed up later in the resource cursor code. For the iommu case,
the whole sg-table may still be coalesced to a single contigous
device va region.
This avoids marking pages that we don't own dirty and accessed, and
it also avoid dereferencing struct pages that we don't own.
v2:
- Use assert to check whether hmm pfns are valid (Matthew Auld)
- Take into account that large pages may cross range boundaries
(Matthew Auld)
v3:
- Don't unnecessarily check for a non-freed sg-table. (Matthew Auld)
- Add a missing up_read() in an error path. (Matthew Auld)
(cherry picked from commit ea3e66d280ce2576664a862693d1da8fd324c317) |
| An error in the ECMA-262 specification relating to Async Generators could have resulted in a type confusion, potentially leading to memory corruption and an exploitable crash. This vulnerability affects Firefox < 128, Firefox ESR < 115.13, Thunderbird < 115.13, and Thunderbird < 128. |
| In the Linux kernel, the following vulnerability has been resolved:
staging: gpib: Fix Oops after disconnect in ni_usb
If the usb dongle is disconnected subsequent calls to the
driver cause a NULL dereference Oops as the bus_interface
is set to NULL on disconnect.
This problem was introduced by setting usb_dev from the bus_interface
for dev_xxx messages.
Previously bus_interface was checked for NULL only in the the functions
directly calling usb_fill_bulk_urb or usb_control_msg.
Check for valid bus_interface on all interface entry points
and return -ENODEV if it is NULL. |
| In the Linux kernel, the following vulnerability has been resolved:
staging: gpib: Fix Oops after disconnect in agilent usb
If the agilent usb dongle is disconnected subsequent calls to the
driver cause a NULL dereference Oops as the bus_interface
is set to NULL on disconnect.
This problem was introduced by setting usb_dev from the bus_interface
for dev_xxx messages.
Previously bus_interface was checked for NULL only in the functions
directly calling usb_fill_bulk_urb or usb_control_msg.
Check for valid bus_interface on all interface entry points
and return -ENODEV if it is NULL. |
| In the Linux kernel, the following vulnerability has been resolved:
ASoC: SOF: ipc4-topology: Harden loops for looking up ALH copiers
Other, non DAI copier widgets could have the same stream name (sname) as
the ALH copier and in that case the copier->data is NULL, no alh_data is
attached, which could lead to NULL pointer dereference.
We could check for this NULL pointer in sof_ipc4_prepare_copier_module()
and avoid the crash, but a similar loop in sof_ipc4_widget_setup_comp_dai()
will miscalculate the ALH device count, causing broken audio.
The correct fix is to harden the matching logic by making sure that the
1. widget is a DAI widget - so dai = w->private is valid
2. the dai (and thus the copier) is ALH copier |
| Envoy is a cloud-native, open source edge and service proxy. Prior to 1.36.1, 1.35.5, 1.34.9, and 1.33.10, large requests and responses can potentially trigger TCP connection pool crashes due to flow control management in Envoy. It will happen when the connection is closing but upstream data is still coming, resulting in a buffer watermark callback nullptr reference. The vulnerability impacts TCP proxy and HTTP 1 & 2 mixed use cases based on ALPN. This vulnerability is fixed in 1.36.1, 1.35.5, 1.34.9, and 1.33.10. |
| In the Linux kernel, the following vulnerability has been resolved:
nbd: call genl_unregister_family() first in nbd_cleanup()
Otherwise there may be race between module removal and the handling of
netlink command, which can lead to the oops as shown below:
BUG: kernel NULL pointer dereference, address: 0000000000000098
Oops: 0002 [#1] SMP PTI
CPU: 1 PID: 31299 Comm: nbd-client Tainted: G E 5.14.0-rc4
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996)
RIP: 0010:down_write+0x1a/0x50
Call Trace:
start_creating+0x89/0x130
debugfs_create_dir+0x1b/0x130
nbd_start_device+0x13d/0x390 [nbd]
nbd_genl_connect+0x42f/0x748 [nbd]
genl_family_rcv_msg_doit.isra.0+0xec/0x150
genl_rcv_msg+0xe5/0x1e0
netlink_rcv_skb+0x55/0x100
genl_rcv+0x29/0x40
netlink_unicast+0x1a8/0x250
netlink_sendmsg+0x21b/0x430
____sys_sendmsg+0x2a4/0x2d0
___sys_sendmsg+0x81/0xc0
__sys_sendmsg+0x62/0xb0
__x64_sys_sendmsg+0x1f/0x30
do_syscall_64+0x3b/0xc0
entry_SYSCALL_64_after_hwframe+0x44/0xae
Modules linked in: nbd(E-) |
| In the Linux kernel, the following vulnerability has been resolved:
cifs: prevent bad output lengths in smb2_ioctl_query_info()
When calling smb2_ioctl_query_info() with
smb_query_info::flags=PASSTHRU_FSCTL and
smb_query_info::output_buffer_length=0, the following would return
0x10
buffer = memdup_user(arg + sizeof(struct smb_query_info),
qi.output_buffer_length);
if (IS_ERR(buffer)) {
kfree(vars);
return PTR_ERR(buffer);
}
rather than a valid pointer thus making IS_ERR() check fail. This
would then cause a NULL ptr deference in @buffer when accessing it
later in smb2_ioctl_query_ioctl(). While at it, prevent having a
@buffer smaller than 8 bytes to correctly handle SMB2_SET_INFO
FileEndOfFileInformation requests when
smb_query_info::flags=PASSTHRU_SET_INFO.
Here is a small C reproducer which triggers a NULL ptr in @buffer when
passing an invalid smb_query_info::flags
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <unistd.h>
#include <fcntl.h>
#include <sys/ioctl.h>
#define die(s) perror(s), exit(1)
#define QUERY_INFO 0xc018cf07
int main(int argc, char *argv[])
{
int fd;
if (argc < 2)
exit(1);
fd = open(argv[1], O_RDONLY);
if (fd == -1)
die("open");
if (ioctl(fd, QUERY_INFO, (uint32_t[]) { 0, 0, 0, 4, 0, 0}) == -1)
die("ioctl");
close(fd);
return 0;
}
mount.cifs //srv/share /mnt -o ...
gcc repro.c && ./a.out /mnt/f0
[ 114.138620] general protection fault, probably for non-canonical address 0xdffffc0000000000: 0000 [#1] PREEMPT SMP KASAN NOPTI
[ 114.139310] KASAN: null-ptr-deref in range [0x0000000000000000-0x0000000000000007]
[ 114.139775] CPU: 2 PID: 995 Comm: a.out Not tainted 5.17.0-rc8 #1
[ 114.140148] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.15.0-0-g2dd4b9b-rebuilt.opensuse.org 04/01/2014
[ 114.140818] RIP: 0010:smb2_ioctl_query_info+0x206/0x410 [cifs]
[ 114.141221] Code: 00 00 00 00 fc ff df 48 c1 ea 03 80 3c 02 00 0f 85 c8 01 00 00 48 b8 00 00 00 00 00 fc ff df 4c 8b 7b 28 4c 89 fa 48 c1 ea 03 <80> 3c 02 00 0f 85 9c 01 00 00 49 8b 3f e8 58 02 fb ff 48 8b 14 24
[ 114.142348] RSP: 0018:ffffc90000b47b00 EFLAGS: 00010256
[ 114.142692] RAX: dffffc0000000000 RBX: ffff888115503200 RCX: ffffffffa020580d
[ 114.143119] RDX: 0000000000000000 RSI: 0000000000000004 RDI: ffffffffa043a380
[ 114.143544] RBP: ffff888115503278 R08: 0000000000000001 R09: 0000000000000003
[ 114.143983] R10: fffffbfff4087470 R11: 0000000000000001 R12: ffff888115503288
[ 114.144424] R13: 00000000ffffffea R14: ffff888115503228 R15: 0000000000000000
[ 114.144852] FS: 00007f7aeabdf740(0000) GS:ffff888151600000(0000) knlGS:0000000000000000
[ 114.145338] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 114.145692] CR2: 00007f7aeacfdf5e CR3: 000000012000e000 CR4: 0000000000350ee0
[ 114.146131] Call Trace:
[ 114.146291] <TASK>
[ 114.146432] ? smb2_query_reparse_tag+0x890/0x890 [cifs]
[ 114.146800] ? cifs_mapchar+0x460/0x460 [cifs]
[ 114.147121] ? rcu_read_lock_sched_held+0x3f/0x70
[ 114.147412] ? cifs_strndup_to_utf16+0x15b/0x250 [cifs]
[ 114.147775] ? dentry_path_raw+0xa6/0xf0
[ 114.148024] ? cifs_convert_path_to_utf16+0x198/0x220 [cifs]
[ 114.148413] ? smb2_check_message+0x1080/0x1080 [cifs]
[ 114.148766] ? rcu_read_lock_sched_held+0x3f/0x70
[ 114.149065] cifs_ioctl+0x1577/0x3320 [cifs]
[ 114.149371] ? lock_downgrade+0x6f0/0x6f0
[ 114.149631] ? cifs_readdir+0x2e60/0x2e60 [cifs]
[ 114.149956] ? rcu_read_lock_sched_held+0x3f/0x70
[ 114.150250] ? __rseq_handle_notify_resume+0x80b/0xbe0
[ 114.150562] ? __up_read+0x192/0x710
[ 114.150791] ? __ia32_sys_rseq+0xf0/0xf0
[ 114.151025] ? __x64_sys_openat+0x11f/0x1d0
[ 114.151296] __x64_sys_ioctl+0x127/0x190
[ 114.151549] do_syscall_64+0x3b/0x90
[ 114.151768] entry_SYSCALL_64_after_hwframe+0x44/0xae
[ 114.152079] RIP: 0033:0x7f7aead043df
[ 114.152306] Code: 00 48 89 44 24 18 31 c0 48 8d 44 24 60 c7 04 24
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
nvkm/gsp: correctly advance the read pointer of GSP message queue
A GSP event message consists three parts: message header, RPC header,
message body. GSP calculates the number of pages to write from the
total size of a GSP message. This behavior can be observed from the
movement of the write pointer.
However, nvkm takes only the size of RPC header and message body as
the message size when advancing the read pointer. When handling a
two-page GSP message in the non rollback case, It wrongly takes the
message body of the previous message as the message header of the next
message. As the "message length" tends to be zero, in the calculation of
size needs to be copied (0 - size of (message header)), the size needs to
be copied will be "0xffffffxx". It also triggers a kernel panic due to a
NULL pointer error.
[ 547.614102] msg: 00000f90: ff ff ff ff ff ff ff ff 40 d7 18 fb 8b 00 00 00 ........@.......
[ 547.622533] msg: 00000fa0: 00 00 00 00 ff ff ff ff ff ff ff ff 00 00 00 00 ................
[ 547.630965] msg: 00000fb0: ff ff ff ff ff ff ff ff 00 00 00 00 ff ff ff ff ................
[ 547.639397] msg: 00000fc0: ff ff ff ff 00 00 00 00 ff ff ff ff ff ff ff ff ................
[ 547.647832] nvkm 0000:c1:00.0: gsp: peek msg rpc fn:0 len:0x0/0xffffffffffffffe0
[ 547.655225] nvkm 0000:c1:00.0: gsp: get msg rpc fn:0 len:0x0/0xffffffffffffffe0
[ 547.662532] BUG: kernel NULL pointer dereference, address: 0000000000000020
[ 547.669485] #PF: supervisor read access in kernel mode
[ 547.674624] #PF: error_code(0x0000) - not-present page
[ 547.679755] PGD 0 P4D 0
[ 547.682294] Oops: 0000 [#1] PREEMPT SMP NOPTI
[ 547.686643] CPU: 22 PID: 322 Comm: kworker/22:1 Tainted: G E 6.9.0-rc6+ #1
[ 547.694893] Hardware name: ASRockRack 1U1G-MILAN/N/ROMED8-NL, BIOS L3.12E 09/06/2022
[ 547.702626] Workqueue: events r535_gsp_msgq_work [nvkm]
[ 547.707921] RIP: 0010:r535_gsp_msg_recv+0x87/0x230 [nvkm]
[ 547.713375] Code: 00 8b 70 08 48 89 e1 31 d2 4c 89 f7 e8 12 f5 ff ff 48 89 c5 48 85 c0 0f 84 cf 00 00 00 48 81 fd 00 f0 ff ff 0f 87 c4 00 00 00 <8b> 55 10 41 8b 46 30 85 d2 0f 85 f6 00 00 00 83 f8 04 76 10 ba 05
[ 547.732119] RSP: 0018:ffffabe440f87e10 EFLAGS: 00010203
[ 547.737335] RAX: 0000000000000010 RBX: 0000000000000008 RCX: 000000000000003f
[ 547.744461] RDX: 0000000000000000 RSI: ffffabe4480a8030 RDI: 0000000000000010
[ 547.751585] RBP: 0000000000000010 R08: 0000000000000000 R09: ffffabe440f87bb0
[ 547.758707] R10: ffffabe440f87dc8 R11: 0000000000000010 R12: 0000000000000000
[ 547.765834] R13: 0000000000000000 R14: ffff9351df1e5000 R15: 0000000000000000
[ 547.772958] FS: 0000000000000000(0000) GS:ffff93708eb00000(0000) knlGS:0000000000000000
[ 547.781035] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 547.786771] CR2: 0000000000000020 CR3: 00000003cc220002 CR4: 0000000000770ef0
[ 547.793896] PKRU: 55555554
[ 547.796600] Call Trace:
[ 547.799046] <TASK>
[ 547.801152] ? __die+0x20/0x70
[ 547.804211] ? page_fault_oops+0x75/0x170
[ 547.808221] ? print_hex_dump+0x100/0x160
[ 547.812226] ? exc_page_fault+0x64/0x150
[ 547.816152] ? asm_exc_page_fault+0x22/0x30
[ 547.820341] ? r535_gsp_msg_recv+0x87/0x230 [nvkm]
[ 547.825184] r535_gsp_msgq_work+0x42/0x50 [nvkm]
[ 547.829845] process_one_work+0x196/0x3d0
[ 547.833861] worker_thread+0x2fc/0x410
[ 547.837613] ? __pfx_worker_thread+0x10/0x10
[ 547.841885] kthread+0xdf/0x110
[ 547.845031] ? __pfx_kthread+0x10/0x10
[ 547.848775] ret_from_fork+0x30/0x50
[ 547.852354] ? __pfx_kthread+0x10/0x10
[ 547.856097] ret_from_fork_asm+0x1a/0x30
[ 547.860019] </TASK>
[ 547.862208] Modules linked in: nvkm(E) gsp_log(E) snd_seq_dummy(E) snd_hrtimer(E) snd_seq(E) snd_timer(E) snd_seq_device(E) snd(E) soundcore(E) rfkill(E) qrtr(E) vfat(E) fat(E) ipmi_ssif(E) amd_atl(E) intel_rapl_msr(E) intel_rapl_common(E) amd64_edac(E) mlx5_ib(E) edac_mce_amd(E) kvm_amd
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
dpll: fix xa_alloc_cyclic() error handling
In case of returning 1 from xa_alloc_cyclic() (wrapping) ERR_PTR(1) will
be returned, which will cause IS_ERR() to be false. Which can lead to
dereference not allocated pointer (pin).
Fix it by checking if err is lower than zero.
This wasn't found in real usecase, only noticed. Credit to Pierre. |
| In the Linux kernel, the following vulnerability has been resolved:
devlink: fix xa_alloc_cyclic() error handling
In case of returning 1 from xa_alloc_cyclic() (wrapping) ERR_PTR(1) will
be returned, which will cause IS_ERR() to be false. Which can lead to
dereference not allocated pointer (rel).
Fix it by checking if err is lower than zero.
This wasn't found in real usecase, only noticed. Credit to Pierre. |