| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
ipv6: prevent possible UAF in ip6_xmit()
If skb_expand_head() returns NULL, skb has been freed
and the associated dst/idev could also have been freed.
We must use rcu_read_lock() to prevent a possible UAF. |
| In the Linux kernel, the following vulnerability has been resolved:
mptcp: pm: avoid possible UaF when selecting endp
select_local_address() and select_signal_address() both select an
endpoint entry from the list inside an RCU protected section, but return
a reference to it, to be read later on. If the entry is dereferenced
after the RCU unlock, reading info could cause a Use-after-Free.
A simple solution is to copy the required info while inside the RCU
protected section to avoid any risk of UaF later. The address ID might
need to be modified later to handle the ID0 case later, so a copy seems
OK to deal with. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/mgag200: Bind I2C lifetime to DRM device
Managed cleanup with devm_add_action_or_reset() will release the I2C
adapter when the underlying Linux device goes away. But the connector
still refers to it, so this cleanup leaves behind a stale pointer
in struct drm_connector.ddc.
Bind the lifetime of the I2C adapter to the connector's lifetime by
using DRM's managed release. When the DRM device goes away (after
the Linux device) DRM will first clean up the connector and then
clean up the I2C adapter. |
| In the Linux kernel, the following vulnerability has been resolved:
kcm: Serialise kcm_sendmsg() for the same socket.
syzkaller reported UAF in kcm_release(). [0]
The scenario is
1. Thread A builds a skb with MSG_MORE and sets kcm->seq_skb.
2. Thread A resumes building skb from kcm->seq_skb but is blocked
by sk_stream_wait_memory()
3. Thread B calls sendmsg() concurrently, finishes building kcm->seq_skb
and puts the skb to the write queue
4. Thread A faces an error and finally frees skb that is already in the
write queue
5. kcm_release() does double-free the skb in the write queue
When a thread is building a MSG_MORE skb, another thread must not touch it.
Let's add a per-sk mutex and serialise kcm_sendmsg().
[0]:
BUG: KASAN: slab-use-after-free in __skb_unlink include/linux/skbuff.h:2366 [inline]
BUG: KASAN: slab-use-after-free in __skb_dequeue include/linux/skbuff.h:2385 [inline]
BUG: KASAN: slab-use-after-free in __skb_queue_purge_reason include/linux/skbuff.h:3175 [inline]
BUG: KASAN: slab-use-after-free in __skb_queue_purge include/linux/skbuff.h:3181 [inline]
BUG: KASAN: slab-use-after-free in kcm_release+0x170/0x4c8 net/kcm/kcmsock.c:1691
Read of size 8 at addr ffff0000ced0fc80 by task syz-executor329/6167
CPU: 1 PID: 6167 Comm: syz-executor329 Tainted: G B 6.8.0-rc5-syzkaller-g9abbc24128bc #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/25/2024
Call trace:
dump_backtrace+0x1b8/0x1e4 arch/arm64/kernel/stacktrace.c:291
show_stack+0x2c/0x3c arch/arm64/kernel/stacktrace.c:298
__dump_stack lib/dump_stack.c:88 [inline]
dump_stack_lvl+0xd0/0x124 lib/dump_stack.c:106
print_address_description mm/kasan/report.c:377 [inline]
print_report+0x178/0x518 mm/kasan/report.c:488
kasan_report+0xd8/0x138 mm/kasan/report.c:601
__asan_report_load8_noabort+0x20/0x2c mm/kasan/report_generic.c:381
__skb_unlink include/linux/skbuff.h:2366 [inline]
__skb_dequeue include/linux/skbuff.h:2385 [inline]
__skb_queue_purge_reason include/linux/skbuff.h:3175 [inline]
__skb_queue_purge include/linux/skbuff.h:3181 [inline]
kcm_release+0x170/0x4c8 net/kcm/kcmsock.c:1691
__sock_release net/socket.c:659 [inline]
sock_close+0xa4/0x1e8 net/socket.c:1421
__fput+0x30c/0x738 fs/file_table.c:376
____fput+0x20/0x30 fs/file_table.c:404
task_work_run+0x230/0x2e0 kernel/task_work.c:180
exit_task_work include/linux/task_work.h:38 [inline]
do_exit+0x618/0x1f64 kernel/exit.c:871
do_group_exit+0x194/0x22c kernel/exit.c:1020
get_signal+0x1500/0x15ec kernel/signal.c:2893
do_signal+0x23c/0x3b44 arch/arm64/kernel/signal.c:1249
do_notify_resume+0x74/0x1f4 arch/arm64/kernel/entry-common.c:148
exit_to_user_mode_prepare arch/arm64/kernel/entry-common.c:169 [inline]
exit_to_user_mode arch/arm64/kernel/entry-common.c:178 [inline]
el0_svc+0xac/0x168 arch/arm64/kernel/entry-common.c:713
el0t_64_sync_handler+0x84/0xfc arch/arm64/kernel/entry-common.c:730
el0t_64_sync+0x190/0x194 arch/arm64/kernel/entry.S:598
Allocated by task 6166:
kasan_save_stack mm/kasan/common.c:47 [inline]
kasan_save_track+0x40/0x78 mm/kasan/common.c:68
kasan_save_alloc_info+0x70/0x84 mm/kasan/generic.c:626
unpoison_slab_object mm/kasan/common.c:314 [inline]
__kasan_slab_alloc+0x74/0x8c mm/kasan/common.c:340
kasan_slab_alloc include/linux/kasan.h:201 [inline]
slab_post_alloc_hook mm/slub.c:3813 [inline]
slab_alloc_node mm/slub.c:3860 [inline]
kmem_cache_alloc_node+0x204/0x4c0 mm/slub.c:3903
__alloc_skb+0x19c/0x3d8 net/core/skbuff.c:641
alloc_skb include/linux/skbuff.h:1296 [inline]
kcm_sendmsg+0x1d3c/0x2124 net/kcm/kcmsock.c:783
sock_sendmsg_nosec net/socket.c:730 [inline]
__sock_sendmsg net/socket.c:745 [inline]
sock_sendmsg+0x220/0x2c0 net/socket.c:768
splice_to_socket+0x7cc/0xd58 fs/splice.c:889
do_splice_from fs/splice.c:941 [inline]
direct_splice_actor+0xec/0x1d8 fs/splice.c:1164
splice_direct_to_actor+0x438/0xa0c fs/splice.c:1108
do_splice_direct_actor
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
net: bridge: mcast: wait for previous gc cycles when removing port
syzbot hit a use-after-free[1] which is caused because the bridge doesn't
make sure that all previous garbage has been collected when removing a
port. What happens is:
CPU 1 CPU 2
start gc cycle remove port
acquire gc lock first
wait for lock
call br_multicasg_gc() directly
acquire lock now but free port
the port can be freed
while grp timers still
running
Make sure all previous gc cycles have finished by using flush_work before
freeing the port.
[1]
BUG: KASAN: slab-use-after-free in br_multicast_port_group_expired+0x4c0/0x550 net/bridge/br_multicast.c:861
Read of size 8 at addr ffff888071d6d000 by task syz.5.1232/9699
CPU: 1 PID: 9699 Comm: syz.5.1232 Not tainted 6.10.0-rc5-syzkaller-00021-g24ca36a562d6 #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 06/07/2024
Call Trace:
<IRQ>
__dump_stack lib/dump_stack.c:88 [inline]
dump_stack_lvl+0x116/0x1f0 lib/dump_stack.c:114
print_address_description mm/kasan/report.c:377 [inline]
print_report+0xc3/0x620 mm/kasan/report.c:488
kasan_report+0xd9/0x110 mm/kasan/report.c:601
br_multicast_port_group_expired+0x4c0/0x550 net/bridge/br_multicast.c:861
call_timer_fn+0x1a3/0x610 kernel/time/timer.c:1792
expire_timers kernel/time/timer.c:1843 [inline]
__run_timers+0x74b/0xaf0 kernel/time/timer.c:2417
__run_timer_base kernel/time/timer.c:2428 [inline]
__run_timer_base kernel/time/timer.c:2421 [inline]
run_timer_base+0x111/0x190 kernel/time/timer.c:2437 |
| A use-after-free issue was addressed with improved memory management. This issue is fixed in iOS 18.1 and iPadOS 18.1, watchOS 11.1, visionOS 2.1, tvOS 18.1. An app may be able to cause unexpected system termination or corrupt kernel memory. |
| A use-after-free issue was addressed with improved memory management. This issue is fixed in visionOS 2.4, tvOS 18.4, iPadOS 17.7.6, iOS 18.4 and iPadOS 18.4, macOS Sequoia 15.4, Safari 18.4. Processing maliciously crafted web content may lead to an unexpected Safari crash. |
| numbers.c in libxslt before 1.1.43 has a use-after-free because, in nested XPath evaluations, an XPath context node can be modified but never restored. This is related to xsltNumberFormatGetValue, xsltEvalXPathPredicate, xsltEvalXPathStringNs, and xsltComputeSortResultInternal. |
| In the Linux kernel, the following vulnerability has been resolved:
cgroup/cpuset: Prevent UAF in proc_cpuset_show()
An UAF can happen when /proc/cpuset is read as reported in [1].
This can be reproduced by the following methods:
1.add an mdelay(1000) before acquiring the cgroup_lock In the
cgroup_path_ns function.
2.$cat /proc/<pid>/cpuset repeatly.
3.$mount -t cgroup -o cpuset cpuset /sys/fs/cgroup/cpuset/
$umount /sys/fs/cgroup/cpuset/ repeatly.
The race that cause this bug can be shown as below:
(umount) | (cat /proc/<pid>/cpuset)
css_release | proc_cpuset_show
css_release_work_fn | css = task_get_css(tsk, cpuset_cgrp_id);
css_free_rwork_fn | cgroup_path_ns(css->cgroup, ...);
cgroup_destroy_root | mutex_lock(&cgroup_mutex);
rebind_subsystems |
cgroup_free_root |
| // cgrp was freed, UAF
| cgroup_path_ns_locked(cgrp,..);
When the cpuset is initialized, the root node top_cpuset.css.cgrp
will point to &cgrp_dfl_root.cgrp. In cgroup v1, the mount operation will
allocate cgroup_root, and top_cpuset.css.cgrp will point to the allocated
&cgroup_root.cgrp. When the umount operation is executed,
top_cpuset.css.cgrp will be rebound to &cgrp_dfl_root.cgrp.
The problem is that when rebinding to cgrp_dfl_root, there are cases
where the cgroup_root allocated by setting up the root for cgroup v1
is cached. This could lead to a Use-After-Free (UAF) if it is
subsequently freed. The descendant cgroups of cgroup v1 can only be
freed after the css is released. However, the css of the root will never
be released, yet the cgroup_root should be freed when it is unmounted.
This means that obtaining a reference to the css of the root does
not guarantee that css.cgrp->root will not be freed.
Fix this problem by using rcu_read_lock in proc_cpuset_show().
As cgroup_root is kfree_rcu after commit d23b5c577715
("cgroup: Make operations on the cgroup root_list RCU safe"),
css->cgroup won't be freed during the critical section.
To call cgroup_path_ns_locked, css_set_lock is needed, so it is safe to
replace task_get_css with task_css.
[1] https://syzkaller.appspot.com/bug?extid=9b1ff7be974a403aa4cd |
| In the Linux kernel, the following vulnerability has been resolved:
soc: qcom: pdr: protect locator_addr with the main mutex
If the service locator server is restarted fast enough, the PDR can
rewrite locator_addr fields concurrently. Protect them by placing
modification of those fields under the main pdr->lock. |
| In the Linux kernel, the following vulnerability has been resolved:
leds: trigger: Unregister sysfs attributes before calling deactivate()
Triggers which have trigger specific sysfs attributes typically store
related data in trigger-data allocated by the activate() callback and
freed by the deactivate() callback.
Calling device_remove_groups() after calling deactivate() leaves a window
where the sysfs attributes show/store functions could be called after
deactivation and then operate on the just freed trigger-data.
Move the device_remove_groups() call to before deactivate() to close
this race window.
This also makes the deactivation path properly do things in reverse order
of the activation path which calls the activate() callback before calling
device_add_groups(). |
| In the src/libs/zbxembed/browser.c file, the es_browser_ctor method retrieves a heap pointer from the Duktape JavaScript engine. This heap pointer is subsequently utilized by the browser_push_error method in the src/libs/zbxembed/browser_error.c file. A use-after-free bug can occur at this stage if the wd->browser heap pointer is freed by garbage collection. |
| In the Linux kernel, the following vulnerability has been resolved:
btrfs: fix extent map use-after-free when adding pages to compressed bio
At add_ra_bio_pages() we are accessing the extent map to calculate
'add_size' after we dropped our reference on the extent map, resulting
in a use-after-free. Fix this by computing 'add_size' before dropping our
extent map reference. |
| In the Linux kernel, the following vulnerability has been resolved:
media: venus: fix use after free in vdec_close
There appears to be a possible use after free with vdec_close().
The firmware will add buffer release work to the work queue through
HFI callbacks as a normal part of decoding. Randomly closing the
decoder device from userspace during normal decoding can incur
a read after free for inst.
Fix it by cancelling the work in vdec_close. |
| In the Linux kernel, the following vulnerability has been resolved:
PCI/DPC: Fix use-after-free on concurrent DPC and hot-removal
Keith reports a use-after-free when a DPC event occurs concurrently to
hot-removal of the same portion of the hierarchy:
The dpc_handler() awaits readiness of the secondary bus below the
Downstream Port where the DPC event occurred. To do so, it polls the
config space of the first child device on the secondary bus. If that
child device is concurrently removed, accesses to its struct pci_dev
cause the kernel to oops.
That's because pci_bridge_wait_for_secondary_bus() neglects to hold a
reference on the child device. Before v6.3, the function was only
called on resume from system sleep or on runtime resume. Holding a
reference wasn't necessary back then because the pciehp IRQ thread
could never run concurrently. (On resume from system sleep, IRQs are
not enabled until after the resume_noirq phase. And runtime resume is
always awaited before a PCI device is removed.)
However starting with v6.3, pci_bridge_wait_for_secondary_bus() is also
called on a DPC event. Commit 53b54ad074de ("PCI/DPC: Await readiness
of secondary bus after reset"), which introduced that, failed to
appreciate that pci_bridge_wait_for_secondary_bus() now needs to hold a
reference on the child device because dpc_handler() and pciehp may
indeed run concurrently. The commit was backported to v5.10+ stable
kernels, so that's the oldest one affected.
Add the missing reference acquisition.
Abridged stack trace:
BUG: unable to handle page fault for address: 00000000091400c0
CPU: 15 PID: 2464 Comm: irq/53-pcie-dpc 6.9.0
RIP: pci_bus_read_config_dword+0x17/0x50
pci_dev_wait()
pci_bridge_wait_for_secondary_bus()
dpc_reset_link()
pcie_do_recovery()
dpc_handler() |
| In the Linux kernel, the following vulnerability has been resolved:
RDMA/iwcm: Fix a use-after-free related to destroying CM IDs
iw_conn_req_handler() associates a new struct rdma_id_private (conn_id) with
an existing struct iw_cm_id (cm_id) as follows:
conn_id->cm_id.iw = cm_id;
cm_id->context = conn_id;
cm_id->cm_handler = cma_iw_handler;
rdma_destroy_id() frees both the cm_id and the struct rdma_id_private. Make
sure that cm_work_handler() does not trigger a use-after-free by only
freeing of the struct rdma_id_private after all pending work has finished. |
| In the Linux kernel, the following vulnerability has been resolved:
mISDN: Fix a use after free in hfcmulti_tx()
Don't dereference *sp after calling dev_kfree_skb(*sp). |
| In the Linux kernel, the following vulnerability has been resolved:
net/iucv: fix use after free in iucv_sock_close()
iucv_sever_path() is called from process context and from bh context.
iucv->path is used as indicator whether somebody else is taking care of
severing the path (or it is already removed / never existed).
This needs to be done with atomic compare and swap, otherwise there is a
small window where iucv_sock_close() will try to work with a path that has
already been severed and freed by iucv_callback_connrej() called by
iucv_tasklet_fn().
Example:
[452744.123844] Call Trace:
[452744.123845] ([<0000001e87f03880>] 0x1e87f03880)
[452744.123966] [<00000000d593001e>] iucv_path_sever+0x96/0x138
[452744.124330] [<000003ff801ddbca>] iucv_sever_path+0xc2/0xd0 [af_iucv]
[452744.124336] [<000003ff801e01b6>] iucv_sock_close+0xa6/0x310 [af_iucv]
[452744.124341] [<000003ff801e08cc>] iucv_sock_release+0x3c/0xd0 [af_iucv]
[452744.124345] [<00000000d574794e>] __sock_release+0x5e/0xe8
[452744.124815] [<00000000d5747a0c>] sock_close+0x34/0x48
[452744.124820] [<00000000d5421642>] __fput+0xba/0x268
[452744.124826] [<00000000d51b382c>] task_work_run+0xbc/0xf0
[452744.124832] [<00000000d5145710>] do_notify_resume+0x88/0x90
[452744.124841] [<00000000d5978096>] system_call+0xe2/0x2c8
[452744.125319] Last Breaking-Event-Address:
[452744.125321] [<00000000d5930018>] iucv_path_sever+0x90/0x138
[452744.125324]
[452744.125325] Kernel panic - not syncing: Fatal exception in interrupt
Note that bh_lock_sock() is not serializing the tasklet context against
process context, because the check for sock_owned_by_user() and
corresponding handling is missing.
Ideas for a future clean-up patch:
A) Correct usage of bh_lock_sock() in tasklet context, as described in
Re-enqueue, if needed. This may require adding return values to the
tasklet functions and thus changes to all users of iucv.
B) Change iucv tasklet into worker and use only lock_sock() in af_iucv. |
| In the Linux kernel, the following vulnerability has been resolved:
crypto: hisilicon/debugfs - Fix debugfs uninit process issue
During the zip probe process, the debugfs failure does not stop
the probe. When debugfs initialization fails, jumping to the
error branch will also release regs, in addition to its own
rollback operation.
As a result, it may be released repeatedly during the regs
uninit process. Therefore, the null check needs to be added to
the regs uninit process. |
| In the Linux kernel, the following vulnerability has been resolved:
mlxsw: core_linecards: Fix double memory deallocation in case of invalid INI file
In case of invalid INI file mlxsw_linecard_types_init() deallocates memory
but doesn't reset pointer to NULL and returns 0. In case of any error
occurred after mlxsw_linecard_types_init() call, mlxsw_linecards_init()
calls mlxsw_linecard_types_fini() which performs memory deallocation again.
Add pointer reset to NULL.
Found by Linux Verification Center (linuxtesting.org) with SVACE. |