| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
nfsd: cancel nfsd_shrinker_work using sync mode in nfs4_state_shutdown_net
In the normal case, when we excute `echo 0 > /proc/fs/nfsd/threads`, the
function `nfs4_state_destroy_net` in `nfs4_state_shutdown_net` will
release all resources related to the hashed `nfs4_client`. If the
`nfsd_client_shrinker` is running concurrently, the `expire_client`
function will first unhash this client and then destroy it. This can
lead to the following warning. Additionally, numerous use-after-free
errors may occur as well.
nfsd_client_shrinker echo 0 > /proc/fs/nfsd/threads
expire_client nfsd_shutdown_net
unhash_client ...
nfs4_state_shutdown_net
/* won't wait shrinker exit */
/* cancel_work(&nn->nfsd_shrinker_work)
* nfsd_file for this /* won't destroy unhashed client1 */
* client1 still alive nfs4_state_destroy_net
*/
nfsd_file_cache_shutdown
/* trigger warning */
kmem_cache_destroy(nfsd_file_slab)
kmem_cache_destroy(nfsd_file_mark_slab)
/* release nfsd_file and mark */
__destroy_client
====================================================================
BUG nfsd_file (Not tainted): Objects remaining in nfsd_file on
__kmem_cache_shutdown()
--------------------------------------------------------------------
CPU: 4 UID: 0 PID: 764 Comm: sh Not tainted 6.12.0-rc3+ #1
dump_stack_lvl+0x53/0x70
slab_err+0xb0/0xf0
__kmem_cache_shutdown+0x15c/0x310
kmem_cache_destroy+0x66/0x160
nfsd_file_cache_shutdown+0xac/0x210 [nfsd]
nfsd_destroy_serv+0x251/0x2a0 [nfsd]
nfsd_svc+0x125/0x1e0 [nfsd]
write_threads+0x16a/0x2a0 [nfsd]
nfsctl_transaction_write+0x74/0xa0 [nfsd]
vfs_write+0x1a5/0x6d0
ksys_write+0xc1/0x160
do_syscall_64+0x5f/0x170
entry_SYSCALL_64_after_hwframe+0x76/0x7e
====================================================================
BUG nfsd_file_mark (Tainted: G B W ): Objects remaining
nfsd_file_mark on __kmem_cache_shutdown()
--------------------------------------------------------------------
dump_stack_lvl+0x53/0x70
slab_err+0xb0/0xf0
__kmem_cache_shutdown+0x15c/0x310
kmem_cache_destroy+0x66/0x160
nfsd_file_cache_shutdown+0xc8/0x210 [nfsd]
nfsd_destroy_serv+0x251/0x2a0 [nfsd]
nfsd_svc+0x125/0x1e0 [nfsd]
write_threads+0x16a/0x2a0 [nfsd]
nfsctl_transaction_write+0x74/0xa0 [nfsd]
vfs_write+0x1a5/0x6d0
ksys_write+0xc1/0x160
do_syscall_64+0x5f/0x170
entry_SYSCALL_64_after_hwframe+0x76/0x7e
To resolve this issue, cancel `nfsd_shrinker_work` using synchronous
mode in nfs4_state_shutdown_net. |
| In the Linux kernel, the following vulnerability has been resolved:
spi: mpc52xx: Add cancel_work_sync before module remove
If we remove the module which will call mpc52xx_spi_remove
it will free 'ms' through spi_unregister_controller.
while the work ms->work will be used. The sequence of operations
that may lead to a UAF bug.
Fix it by ensuring that the work is canceled before proceeding with
the cleanup in mpc52xx_spi_remove. |
| In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: MGMT: Fix possible crash on mgmt_index_removed
If mgmt_index_removed is called while there are commands queued on
cmd_sync it could lead to crashes like the bellow trace:
0x0000053D: __list_del_entry_valid_or_report+0x98/0xdc
0x0000053D: mgmt_pending_remove+0x18/0x58 [bluetooth]
0x0000053E: mgmt_remove_adv_monitor_complete+0x80/0x108 [bluetooth]
0x0000053E: hci_cmd_sync_work+0xbc/0x164 [bluetooth]
So while handling mgmt_index_removed this attempts to dequeue
commands passed as user_data to cmd_sync. |
| In the Linux kernel, the following vulnerability has been resolved:
fbdev: efifb: Register sysfs groups through driver core
The driver core can register and cleanup sysfs groups already.
Make use of that functionality to simplify the error handling and
cleanup.
Also avoid a UAF race during unregistering where the sysctl attributes
were usable after the info struct was freed. |
| GStreamer is a library for constructing graphs of media-handling components. An Use-After-Free read vulnerability has been discovered affecting the processing of CodecPrivate elements in Matroska streams. In the GST_MATROSKA_ID_CODECPRIVATE case within the gst_matroska_demux_parse_stream function, a data chunk is allocated using gst_ebml_read_binary. Later, the allocated memory is freed in the gst_matroska_track_free function, by the call to g_free (track->codec_priv). Finally, the freed memory is accessed in the caps_serialize function through gst_value_serialize_buffer. The freed memory will be accessed in the gst_value_serialize_buffer function. This results in a UAF read vulnerability, as the function tries to process memory that has already been freed. This vulnerability is fixed in 1.24.10. |
| Vim is an open source, command line text editor. A use-after-free was found in Vim < 9.1.0764. When closing a buffer (visible in a window) a BufWinLeave auto command can cause an use-after-free if this auto command happens to re-open the same buffer in a new split window. Impact is low since the user must have intentionally set up such a strange auto command and run some buffer unload commands. However this may lead to a crash. This issue has been addressed in version 9.1.0764 and all users are advised to upgrade. There are no known workarounds for this vulnerability. |
| In the Linux kernel, the following vulnerability has been resolved:
RDMA/rxe: Fix seg fault in rxe_comp_queue_pkt
In rxe_comp_queue_pkt() an incoming response packet skb is enqueued to the
resp_pkts queue and then a decision is made whether to run the completer
task inline or schedule it. Finally the skb is dereferenced to bump a 'hw'
performance counter. This is wrong because if the completer task is
already running in a separate thread it may have already processed the skb
and freed it which can cause a seg fault. This has been observed
infrequently in testing at high scale.
This patch fixes this by changing the order of enqueuing the packet until
after the counter is accessed. |
| In the Linux kernel, the following vulnerability has been resolved:
gpiolib: cdev: Fix use after free in lineinfo_changed_notify
The use-after-free issue occurs as follows: when the GPIO chip device file
is being closed by invoking gpio_chrdev_release(), watched_lines is freed
by bitmap_free(), but the unregistration of lineinfo_changed_nb notifier
chain failed due to waiting write rwsem. Additionally, one of the GPIO
chip's lines is also in the release process and holds the notifier chain's
read rwsem. Consequently, a race condition leads to the use-after-free of
watched_lines.
Here is the typical stack when issue happened:
[free]
gpio_chrdev_release()
--> bitmap_free(cdev->watched_lines) <-- freed
--> blocking_notifier_chain_unregister()
--> down_write(&nh->rwsem) <-- waiting rwsem
--> __down_write_common()
--> rwsem_down_write_slowpath()
--> schedule_preempt_disabled()
--> schedule()
[use]
st54spi_gpio_dev_release()
--> gpio_free()
--> gpiod_free()
--> gpiod_free_commit()
--> gpiod_line_state_notify()
--> blocking_notifier_call_chain()
--> down_read(&nh->rwsem); <-- held rwsem
--> notifier_call_chain()
--> lineinfo_changed_notify()
--> test_bit(xxxx, cdev->watched_lines) <-- use after free
The side effect of the use-after-free issue is that a GPIO line event is
being generated for userspace where it shouldn't. However, since the chrdev
is being closed, userspace won't have the chance to read that event anyway.
To fix the issue, call the bitmap_free() function after the unregistration
of lineinfo_changed_nb notifier chain. |
| libmodbus v3.1.6 was discovered to contain a use-after-free via the ctx->backend pointer. This vulnerability allows attackers to cause a Denial of Service (DoS) via a crafted message sent to the unit-test-server. |
| In the Linux kernel, the following vulnerability has been resolved:
IORING_OP_READ did not correctly consume the provided buffer list when
read i/o returned < 0 (except for -EAGAIN and -EIOCBQUEUED return).
This can lead to a potential use-after-free when the completion via
io_rw_done runs at separate context. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: mac80211: fix potential key use-after-free
When ieee80211_key_link() is called by ieee80211_gtk_rekey_add()
but returns 0 due to KRACK protection (identical key reinstall),
ieee80211_gtk_rekey_add() will still return a pointer into the
key, in a potential use-after-free. This normally doesn't happen
since it's only called by iwlwifi in case of WoWLAN rekey offload
which has its own KRACK protection, but still better to fix, do
that by returning an error code and converting that to success on
the cfg80211 boundary only, leaving the error for bad callers of
ieee80211_gtk_rekey_add(). |
| Use After Free in GitHub repository vim/vim prior to 9.0.1858. |
| libxml2 through 2.11.5 has a use-after-free that can only occur after a certain memory allocation fails. This occurs in xmlUnlinkNode in tree.c. NOTE: the vendor's position is "I don't think these issues are critical enough to warrant a CVE ID ... because an attacker typically can't control when memory allocations fail." |
| A use-after-free vulnerability was discovered in BusyBox v.1.36.1 via a crafted awk pattern in the awk.c copyvar function. |
| A use-after-free vulnerability in BusyBox v.1.36.1 allows attackers to cause a denial of service via a crafted awk pattern in the awk.c evaluate function. |
| loadImage() in tools/tiffcrop.c in LibTIFF through 4.5.0 has a heap-based use after free via a crafted TIFF image. |
| xmlXIncludeAddNode in xinclude.c in libxml2 before 2.11.0 has a use-after-free. |
| Use After Free in GitHub repository vim/vim prior to 9.0.0389. |
| Use After Free in GitHub repository vim/vim prior to 9.0.0360. |
| Use after free in append_command in GitHub repository vim/vim prior to 8.2.4895. This vulnerability is capable of crashing software, Bypass Protection Mechanism, Modify Memory, and possible remote execution |