| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
gpio: mockup: Fix potential resource leakage when register a chip
If creation of software node fails, the locally allocated string
array is left unfreed. Free it on error path. |
| In the Linux kernel, the following vulnerability has been resolved:
gpiolib: cdev: Set lineevent_state::irq after IRQ register successfully
When running gpio test on nxp-ls1028 platform with below command
gpiomon --num-events=3 --rising-edge gpiochip1 25
There will be a warning trace as below:
Call trace:
free_irq+0x204/0x360
lineevent_free+0x64/0x70
gpio_ioctl+0x598/0x6a0
__arm64_sys_ioctl+0xb4/0x100
invoke_syscall+0x5c/0x130
......
el0t_64_sync+0x1a0/0x1a4
The reason of this issue is that calling request_threaded_irq()
function failed, and then lineevent_free() is invoked to release
the resource. Since the lineevent_state::irq was already set, so
the subsequent invocation of free_irq() would trigger the above
warning call trace. To fix this issue, set the lineevent_state::irq
after the IRQ register successfully. |
| In the Linux kernel, the following vulnerability has been resolved:
mm/slub: fix to return errno if kmalloc() fails
In create_unique_id(), kmalloc(, GFP_KERNEL) can fail due to
out-of-memory, if it fails, return errno correctly rather than
triggering panic via BUG_ON();
kernel BUG at mm/slub.c:5893!
Internal error: Oops - BUG: 0 [#1] PREEMPT SMP
Call trace:
sysfs_slab_add+0x258/0x260 mm/slub.c:5973
__kmem_cache_create+0x60/0x118 mm/slub.c:4899
create_cache mm/slab_common.c:229 [inline]
kmem_cache_create_usercopy+0x19c/0x31c mm/slab_common.c:335
kmem_cache_create+0x1c/0x28 mm/slab_common.c:390
f2fs_kmem_cache_create fs/f2fs/f2fs.h:2766 [inline]
f2fs_init_xattr_caches+0x78/0xb4 fs/f2fs/xattr.c:808
f2fs_fill_super+0x1050/0x1e0c fs/f2fs/super.c:4149
mount_bdev+0x1b8/0x210 fs/super.c:1400
f2fs_mount+0x44/0x58 fs/f2fs/super.c:4512
legacy_get_tree+0x30/0x74 fs/fs_context.c:610
vfs_get_tree+0x40/0x140 fs/super.c:1530
do_new_mount+0x1dc/0x4e4 fs/namespace.c:3040
path_mount+0x358/0x914 fs/namespace.c:3370
do_mount fs/namespace.c:3383 [inline]
__do_sys_mount fs/namespace.c:3591 [inline]
__se_sys_mount fs/namespace.c:3568 [inline]
__arm64_sys_mount+0x2f8/0x408 fs/namespace.c:3568 |
| In the Linux kernel, the following vulnerability has been resolved:
mm: slub: fix flush_cpu_slab()/__free_slab() invocations in task context.
Commit 5a836bf6b09f ("mm: slub: move flush_cpu_slab() invocations
__free_slab() invocations out of IRQ context") moved all flush_cpu_slab()
invocations to the global workqueue to avoid a problem related
with deactivate_slab()/__free_slab() being called from an IRQ context
on PREEMPT_RT kernels.
When the flush_all_cpu_locked() function is called from a task context
it may happen that a workqueue with WQ_MEM_RECLAIM bit set ends up
flushing the global workqueue, this will cause a dependency issue.
workqueue: WQ_MEM_RECLAIM nvme-delete-wq:nvme_delete_ctrl_work [nvme_core]
is flushing !WQ_MEM_RECLAIM events:flush_cpu_slab
WARNING: CPU: 37 PID: 410 at kernel/workqueue.c:2637
check_flush_dependency+0x10a/0x120
Workqueue: nvme-delete-wq nvme_delete_ctrl_work [nvme_core]
RIP: 0010:check_flush_dependency+0x10a/0x120[ 453.262125] Call Trace:
__flush_work.isra.0+0xbf/0x220
? __queue_work+0x1dc/0x420
flush_all_cpus_locked+0xfb/0x120
__kmem_cache_shutdown+0x2b/0x320
kmem_cache_destroy+0x49/0x100
bioset_exit+0x143/0x190
blk_release_queue+0xb9/0x100
kobject_cleanup+0x37/0x130
nvme_fc_ctrl_free+0xc6/0x150 [nvme_fc]
nvme_free_ctrl+0x1ac/0x2b0 [nvme_core]
Fix this bug by creating a workqueue for the flush operation with
the WQ_MEM_RECLAIM bit set. |
| In the Linux kernel, the following vulnerability has been resolved:
arm64: topology: fix possible overflow in amu_fie_setup()
cpufreq_get_hw_max_freq() returns max frequency in kHz as *unsigned int*,
while freq_inv_set_max_ratio() gets passed this frequency in Hz as 'u64'.
Multiplying max frequency by 1000 can potentially result in overflow --
multiplying by 1000ULL instead should avoid that...
Found by Linux Verification Center (linuxtesting.org) with the SVACE static
analysis tool. |
| In the Linux kernel, the following vulnerability has been resolved:
dmaengine: ti: k3-udma-private: Fix refcount leak bug in of_xudma_dev_get()
We should call of_node_put() for the reference returned by
of_parse_phandle() in fail path or when it is not used anymore.
Here we only need to move the of_node_put() before the check. |
| In the Linux kernel, the following vulnerability has been resolved:
firmware: arm_scmi: Harden accesses to the reset domains
Accessing reset domains descriptors by the index upon the SCMI drivers
requests through the SCMI reset operations interface can potentially
lead to out-of-bound violations if the SCMI driver misbehave.
Add an internal consistency check before any such domains descriptors
accesses. |
| In the Linux kernel, the following vulnerability has been resolved:
netfilter: nfnetlink_osf: fix possible bogus match in nf_osf_find()
nf_osf_find() incorrectly returns true on mismatch, this leads to
copying uninitialized memory area in nft_osf which can be used to leak
stale kernel stack data to userspace. |
| In the Linux kernel, the following vulnerability has been resolved:
ipvlan: Fix out-of-bound bugs caused by unset skb->mac_header
If an AF_PACKET socket is used to send packets through ipvlan and the
default xmit function of the AF_PACKET socket is changed from
dev_queue_xmit() to packet_direct_xmit() via setsockopt() with the option
name of PACKET_QDISC_BYPASS, the skb->mac_header may not be reset and
remains as the initial value of 65535, this may trigger slab-out-of-bounds
bugs as following:
=================================================================
UG: KASAN: slab-out-of-bounds in ipvlan_xmit_mode_l2+0xdb/0x330 [ipvlan]
PU: 2 PID: 1768 Comm: raw_send Kdump: loaded Not tainted 6.0.0-rc4+ #6
ardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.14.0-1.fc33
all Trace:
print_address_description.constprop.0+0x1d/0x160
print_report.cold+0x4f/0x112
kasan_report+0xa3/0x130
ipvlan_xmit_mode_l2+0xdb/0x330 [ipvlan]
ipvlan_start_xmit+0x29/0xa0 [ipvlan]
__dev_direct_xmit+0x2e2/0x380
packet_direct_xmit+0x22/0x60
packet_snd+0x7c9/0xc40
sock_sendmsg+0x9a/0xa0
__sys_sendto+0x18a/0x230
__x64_sys_sendto+0x74/0x90
do_syscall_64+0x3b/0x90
entry_SYSCALL_64_after_hwframe+0x63/0xcd
The root cause is:
1. packet_snd() only reset skb->mac_header when sock->type is SOCK_RAW
and skb->protocol is not specified as in packet_parse_headers()
2. packet_direct_xmit() doesn't reset skb->mac_header as dev_queue_xmit()
In this case, skb->mac_header is 65535 when ipvlan_xmit_mode_l2() is
called. So when ipvlan_xmit_mode_l2() gets mac header with eth_hdr() which
use "skb->head + skb->mac_header", out-of-bound access occurs.
This patch replaces eth_hdr() with skb_eth_hdr() in ipvlan_xmit_mode_l2()
and reset mac header in multicast to solve this out-of-bound bug. |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: qla2xxx: Fix memory leak in __qlt_24xx_handle_abts()
Commit 8f394da36a36 ("scsi: qla2xxx: Drop TARGET_SCF_LOOKUP_LUN_FROM_TAG")
made the __qlt_24xx_handle_abts() function return early if
tcm_qla2xxx_find_cmd_by_tag() didn't find a command, but it missed to clean
up the allocated memory for the management command. |
| In the Linux kernel, the following vulnerability has been resolved:
mm/slab_common: fix possible double free of kmem_cache
When doing slub_debug test, kfence's 'test_memcache_typesafe_by_rcu'
kunit test case cause a use-after-free error:
BUG: KASAN: use-after-free in kobject_del+0x14/0x30
Read of size 8 at addr ffff888007679090 by task kunit_try_catch/261
CPU: 1 PID: 261 Comm: kunit_try_catch Tainted: G B N 6.0.0-rc5-next-20220916 #17
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.15.0-1 04/01/2014
Call Trace:
<TASK>
dump_stack_lvl+0x34/0x48
print_address_description.constprop.0+0x87/0x2a5
print_report+0x103/0x1ed
kasan_report+0xb7/0x140
kobject_del+0x14/0x30
kmem_cache_destroy+0x130/0x170
test_exit+0x1a/0x30
kunit_try_run_case+0xad/0xc0
kunit_generic_run_threadfn_adapter+0x26/0x50
kthread+0x17b/0x1b0
</TASK>
The cause is inside kmem_cache_destroy():
kmem_cache_destroy
acquire lock/mutex
shutdown_cache
schedule_work(kmem_cache_release) (if RCU flag set)
release lock/mutex
kmem_cache_release (if RCU flag not set)
In some certain timing, the scheduled work could be run before
the next RCU flag checking, which can then get a wrong value
and lead to double kmem_cache_release().
Fix it by caching the RCU flag inside protected area, just like 'refcnt' |
| In the Linux kernel, the following vulnerability has been resolved:
sfc: fix null pointer dereference in efx_hard_start_xmit
Trying to get the channel from the tx_queue variable here is wrong
because we can only be here if tx_queue is NULL, so we shouldn't
dereference it. As the above comment in the code says, this is very
unlikely to happen, but it's wrong anyway so let's fix it.
I hit this issue because of a different bug that caused tx_queue to be
NULL. If that happens, this is the error message that we get here:
BUG: unable to handle kernel NULL pointer dereference at 0000000000000020
[...]
RIP: 0010:efx_hard_start_xmit+0x153/0x170 [sfc] |
| In the Linux kernel, the following vulnerability has been resolved:
sfc/siena: fix null pointer dereference in efx_hard_start_xmit
Like in previous patch for sfc, prevent potential (but unlikely) NULL
pointer dereference. |
| In the Linux kernel, the following vulnerability has been resolved:
netfilter: nf_tables: fix percpu memory leak at nf_tables_addchain()
It seems to me that percpu memory for chain stats started leaking since
commit 3bc158f8d0330f0a ("netfilter: nf_tables: map basechain priority to
hardware priority") when nft_chain_offload_priority() returned an error. |
| In the Linux kernel, the following vulnerability has been resolved:
netfilter: ebtables: fix memory leak when blob is malformed
The bug fix was incomplete, it "replaced" crash with a memory leak.
The old code had an assignment to "ret" embedded into the conditional,
restore this. |
| In the Linux kernel, the following vulnerability has been resolved:
net: sched: fix possible refcount leak in tc_new_tfilter()
tfilter_put need to be called to put the refount got by tp->ops->get to
avoid possible refcount leak when chain->tmplt_ops != NULL and
chain->tmplt_ops != tp->ops. |
| In the Linux kernel, the following vulnerability has been resolved:
cgroup: cgroup_get_from_id() must check the looked-up kn is a directory
cgroup has to be one kernfs dir, otherwise kernel panic is caused,
especially cgroup id is provide from userspace. |
| In the Linux kernel, the following vulnerability has been resolved:
bnxt: prevent skb UAF after handing over to PTP worker
When reading the timestamp is required bnxt_tx_int() hands
over the ownership of the completed skb to the PTP worker.
The skb should not be used afterwards, as the worker may
run before the rest of our code and free the skb, leading
to a use-after-free.
Since dev_kfree_skb_any() accepts NULL make the loss of
ownership more obvious and set skb to NULL. |
| In the Linux kernel, the following vulnerability has been resolved:
s390/dasd: fix Oops in dasd_alias_get_start_dev due to missing pavgroup
Fix Oops in dasd_alias_get_start_dev() function caused by the pavgroup
pointer being NULL.
The pavgroup pointer is checked on the entrance of the function but
without the lcu->lock being held. Therefore there is a race window
between dasd_alias_get_start_dev() and _lcu_update() which sets
pavgroup to NULL with the lcu->lock held.
Fix by checking the pavgroup pointer with lcu->lock held. |
| In the Linux kernel, the following vulnerability has been resolved:
crypto: qcom-rng - ensure buffer for generate is completely filled
The generate function in struct rng_alg expects that the destination
buffer is completely filled if the function returns 0. qcom_rng_read()
can run into a situation where the buffer is partially filled with
randomness and the remaining part of the buffer is zeroed since
qcom_rng_generate() doesn't check the return value. This issue can
be reproduced by running the following from libkcapi:
kcapi-rng -b 9000000 > OUTFILE
The generated OUTFILE will have three huge sections that contain all
zeros, and this is caused by the code where the test
'val & PRNG_STATUS_DATA_AVAIL' fails.
Let's fix this issue by ensuring that qcom_rng_read() always returns
with a full buffer if the function returns success. Let's also have
qcom_rng_generate() return the correct value.
Here's some statistics from the ent project
(https://www.fourmilab.ch/random/) that shows information about the
quality of the generated numbers:
$ ent -c qcom-random-before
Value Char Occurrences Fraction
0 606748 0.067416
1 33104 0.003678
2 33001 0.003667
...
253 � 32883 0.003654
254 � 33035 0.003671
255 � 33239 0.003693
Total: 9000000 1.000000
Entropy = 7.811590 bits per byte.
Optimum compression would reduce the size
of this 9000000 byte file by 2 percent.
Chi square distribution for 9000000 samples is 9329962.81, and
randomly would exceed this value less than 0.01 percent of the
times.
Arithmetic mean value of data bytes is 119.3731 (127.5 = random).
Monte Carlo value for Pi is 3.197293333 (error 1.77 percent).
Serial correlation coefficient is 0.159130 (totally uncorrelated =
0.0).
Without this patch, the results of the chi-square test is 0.01%, and
the numbers are certainly not random according to ent's project page.
The results improve with this patch:
$ ent -c qcom-random-after
Value Char Occurrences Fraction
0 35432 0.003937
1 35127 0.003903
2 35424 0.003936
...
253 � 35201 0.003911
254 � 34835 0.003871
255 � 35368 0.003930
Total: 9000000 1.000000
Entropy = 7.999979 bits per byte.
Optimum compression would reduce the size
of this 9000000 byte file by 0 percent.
Chi square distribution for 9000000 samples is 258.77, and randomly
would exceed this value 42.24 percent of the times.
Arithmetic mean value of data bytes is 127.5006 (127.5 = random).
Monte Carlo value for Pi is 3.141277333 (error 0.01 percent).
Serial correlation coefficient is 0.000468 (totally uncorrelated =
0.0).
This change was tested on a Nexus 5 phone (msm8974 SoC). |