| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
spi: microchip-core-qspi: stop checking viability of op->max_freq in supports_op callback
In commit 13529647743d9 ("spi: microchip-core-qspi: Support per spi-mem
operation frequency switches") the logic for checking the viability of
op->max_freq in mchp_coreqspi_setup_clock() was copied into
mchp_coreqspi_supports_op(). Unfortunately, op->max_freq is not valid
when this function is called during probe but is instead zero.
Accordingly, baud_rate_val is calculated to be INT_MAX due to division
by zero, causing probe of the attached memory device to fail.
Seemingly spi-microchip-core-qspi was the only driver that had such a
modification made to its supports_op callback when the per_op_freq
capability was added, so just remove it to restore prior functionality. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: mt76: mt7996: add missing check for rx wcid entries
Non-station wcid entries must not be passed to the rx functions.
In case of the global wcid entry, it could even lead to corruption in the wcid
array due to pointer being casted to struct mt7996_sta_link using container_of. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: mt76: fix linked list corruption
Never leave scheduled wcid entries on the temporary on-stack list |
| In the Linux kernel, the following vulnerability has been resolved:
bpf: Fix out-of-bounds dynptr write in bpf_crypto_crypt
Stanislav reported that in bpf_crypto_crypt() the destination dynptr's
size is not validated to be at least as large as the source dynptr's
size before calling into the crypto backend with 'len = src_len'. This
can result in an OOB write when the destination is smaller than the
source.
Concretely, in mentioned function, psrc and pdst are both linear
buffers fetched from each dynptr:
psrc = __bpf_dynptr_data(src, src_len);
[...]
pdst = __bpf_dynptr_data_rw(dst, dst_len);
[...]
err = decrypt ?
ctx->type->decrypt(ctx->tfm, psrc, pdst, src_len, piv) :
ctx->type->encrypt(ctx->tfm, psrc, pdst, src_len, piv);
The crypto backend expects pdst to be large enough with a src_len length
that can be written. Add an additional src_len > dst_len check and bail
out if it's the case. Note that these kfuncs are accessible under root
privileges only. |
| In the Linux kernel, the following vulnerability has been resolved:
net: phy: transfer phy_config_inband() locking responsibility to phylink
Problem description
===================
Lockdep reports a possible circular locking dependency (AB/BA) between
&pl->state_mutex and &phy->lock, as follows.
phylink_resolve() // acquires &pl->state_mutex
-> phylink_major_config()
-> phy_config_inband() // acquires &pl->phydev->lock
whereas all the other call sites where &pl->state_mutex and
&pl->phydev->lock have the locking scheme reversed. Everywhere else,
&pl->phydev->lock is acquired at the top level, and &pl->state_mutex at
the lower level. A clear example is phylink_bringup_phy().
The outlier is the newly introduced phy_config_inband() and the existing
lock order is the correct one. To understand why it cannot be the other
way around, it is sufficient to consider phylink_phy_change(), phylink's
callback from the PHY device's phy->phy_link_change() virtual method,
invoked by the PHY state machine.
phy_link_up() and phy_link_down(), the (indirect) callers of
phylink_phy_change(), are called with &phydev->lock acquired.
Then phylink_phy_change() acquires its own &pl->state_mutex, to
serialize changes made to its pl->phy_state and pl->link_config.
So all other instances of &pl->state_mutex and &phydev->lock must be
consistent with this order.
Problem impact
==============
I think the kernel runs a serious deadlock risk if an existing
phylink_resolve() thread, which results in a phy_config_inband() call,
is concurrent with a phy_link_up() or phy_link_down() call, which will
deadlock on &pl->state_mutex in phylink_phy_change(). Practically
speaking, the impact may be limited by the slow speed of the medium
auto-negotiation protocol, which makes it unlikely for the current state
to still be unresolved when a new one is detected, but I think the
problem is there. Nonetheless, the problem was discovered using lockdep.
Proposed solution
=================
Practically speaking, the phy_config_inband() requirement of having
phydev->lock acquired must transfer to the caller (phylink is the only
caller). There, it must bubble up until immediately before
&pl->state_mutex is acquired, for the cases where that takes place.
Solution details, considerations, notes
=======================================
This is the phy_config_inband() call graph:
sfp_upstream_ops :: connect_phy()
|
v
phylink_sfp_connect_phy()
|
v
phylink_sfp_config_phy()
|
| sfp_upstream_ops :: module_insert()
| |
| v
| phylink_sfp_module_insert()
| |
| | sfp_upstream_ops :: module_start()
| | |
| | v
| | phylink_sfp_module_start()
| | |
| v v
| phylink_sfp_config_optical()
phylink_start() | |
| phylink_resume() v v
| | phylink_sfp_set_config()
| | |
v v v
phylink_mac_initial_config()
| phylink_resolve()
| | phylink_ethtool_ksettings_set()
v v v
phylink_major_config()
|
v
phy_config_inband()
phylink_major_config() caller #1, phylink_mac_initial_config(), does not
acquire &pl->state_mutex nor do its callers. It must acquire
&pl->phydev->lock prior to calling phylink_major_config().
phylink_major_config() caller #2, phylink_resolve() acquires
&pl->state_mutex, thus also needs to acquire &pl->phydev->lock.
phylink_major_config() caller #3, phylink_ethtool_ksettings_set(), is
completely uninteresting, because it only call
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
nfs/localio: restore creds before releasing pageio data
Otherwise if the nfsd filecache code releases the nfsd_file
immediately, it can trigger the BUG_ON(cred == current->cred) in
__put_cred() when it puts the nfsd_file->nf_file->f-cred. |
| In the Linux kernel, the following vulnerability has been resolved:
mm/vmalloc, mm/kasan: respect gfp mask in kasan_populate_vmalloc()
kasan_populate_vmalloc() and its helpers ignore the caller's gfp_mask and
always allocate memory using the hardcoded GFP_KERNEL flag. This makes
them inconsistent with vmalloc(), which was recently extended to support
GFP_NOFS and GFP_NOIO allocations.
Page table allocations performed during shadow population also ignore the
external gfp_mask. To preserve the intended semantics of GFP_NOFS and
GFP_NOIO, wrap the apply_to_page_range() calls into the appropriate
memalloc scope.
xfs calls vmalloc with GFP_NOFS, so this bug could lead to deadlock.
There was a report here
https://lkml.kernel.org/r/686ea951.050a0220.385921.0016.GAE@google.com
This patch:
- Extends kasan_populate_vmalloc() and helpers to take gfp_mask;
- Passes gfp_mask down to alloc_pages_bulk() and __get_free_page();
- Enforces GFP_NOFS/NOIO semantics with memalloc_*_save()/restore()
around apply_to_page_range();
- Updates vmalloc.c and percpu allocator call sites accordingly. |
| In the Linux kernel, the following vulnerability has been resolved:
net: dev_ioctl: take ops lock in hwtstamp lower paths
ndo hwtstamp callbacks are expected to run under the per-device ops
lock. Make the lower get/set paths consistent with the rest of ndo
invocations.
Kernel log:
WARNING: CPU: 13 PID: 51364 at ./include/net/netdev_lock.h:70 __netdev_update_features+0x4bd/0xe60
...
RIP: 0010:__netdev_update_features+0x4bd/0xe60
...
Call Trace:
<TASK>
netdev_update_features+0x1f/0x60
mlx5_hwtstamp_set+0x181/0x290 [mlx5_core]
mlx5e_hwtstamp_set+0x19/0x30 [mlx5_core]
dev_set_hwtstamp_phylib+0x9f/0x220
dev_set_hwtstamp_phylib+0x9f/0x220
dev_set_hwtstamp+0x13d/0x240
dev_ioctl+0x12f/0x4b0
sock_ioctl+0x171/0x370
__x64_sys_ioctl+0x3f7/0x900
? __sys_setsockopt+0x69/0xb0
do_syscall_64+0x6f/0x2e0
entry_SYSCALL_64_after_hwframe+0x4b/0x53
...
</TASK>
....
---[ end trace 0000000000000000 ]---
Note that the mlx5_hwtstamp_set and mlx5e_hwtstamp_set functions shown
in the trace come from an in progress patch converting the legacy ioctl
to ndo_hwtstamp_get/set and are not present in mainline. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: ath12k: fix memory leak in ath12k_service_ready_ext_event
Currently, in ath12k_service_ready_ext_event(), svc_rdy_ext.mac_phy_caps
is not freed in the failure case, causing a memory leak. The following
trace is observed in kmemleak:
unreferenced object 0xffff8b3eb5789c00 (size 1024):
comm "softirq", pid 0, jiffies 4294942577
hex dump (first 32 bytes):
00 00 00 00 01 00 00 00 00 00 00 00 7b 00 00 10 ............{...
01 00 00 00 00 00 00 00 01 00 00 00 1f 38 00 00 .............8..
backtrace (crc 44e1c357):
__kmalloc_noprof+0x30b/0x410
ath12k_wmi_mac_phy_caps_parse+0x84/0x100 [ath12k]
ath12k_wmi_tlv_iter+0x5e/0x140 [ath12k]
ath12k_wmi_svc_rdy_ext_parse+0x308/0x4c0 [ath12k]
ath12k_wmi_tlv_iter+0x5e/0x140 [ath12k]
ath12k_service_ready_ext_event.isra.0+0x44/0xd0 [ath12k]
ath12k_wmi_op_rx+0x2eb/0xd70 [ath12k]
ath12k_htc_rx_completion_handler+0x1f4/0x330 [ath12k]
ath12k_ce_recv_process_cb+0x218/0x300 [ath12k]
ath12k_pci_ce_workqueue+0x1b/0x30 [ath12k]
process_one_work+0x219/0x680
bh_worker+0x198/0x1f0
tasklet_action+0x13/0x30
handle_softirqs+0xca/0x460
__irq_exit_rcu+0xbe/0x110
irq_exit_rcu+0x9/0x30
Free svc_rdy_ext.mac_phy_caps in the error case to fix this memory leak.
Tested-on: QCN9274 hw2.0 PCI WLAN.WBE.1.4.1-00199-QCAHKSWPL_SILICONZ-1 |
| In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: l2cap: Check encryption key size on incoming connection
This is required for passing GAP/SEC/SEM/BI-04-C PTS test case:
Security Mode 4 Level 4, Responder - Invalid Encryption Key Size
- 128 bit
This tests the security key with size from 1 to 15 bytes while the
Security Mode 4 Level 4 requests 16 bytes key size.
Currently PTS fails with the following logs:
- expected:Connection Response:
Code: [3 (0x03)] Code
Identifier: (lt)WildCard: Exists(gt)
Length: [8 (0x0008)]
Destination CID: (lt)WildCard: Exists(gt)
Source CID: [64 (0x0040)]
Result: [3 (0x0003)] Connection refused - Security block
Status: (lt)WildCard: Exists(gt),
but received:Connection Response:
Code: [3 (0x03)] Code
Identifier: [1 (0x01)]
Length: [8 (0x0008)]
Destination CID: [64 (0x0040)]
Source CID: [64 (0x0040)]
Result: [0 (0x0000)] Connection Successful
Status: [0 (0x0000)] No further information available
And HCI logs:
< HCI Command: Read Encrypti.. (0x05|0x0008) plen 2
Handle: 14 Address: 00:1B:DC:F2:24:10 (Vencer Co., Ltd.)
> HCI Event: Command Complete (0x0e) plen 7
Read Encryption Key Size (0x05|0x0008) ncmd 1
Status: Success (0x00)
Handle: 14 Address: 00:1B:DC:F2:24:10 (Vencer Co., Ltd.)
Key size: 7
> ACL Data RX: Handle 14 flags 0x02 dlen 12
L2CAP: Connection Request (0x02) ident 1 len 4
PSM: 4097 (0x1001)
Source CID: 64
< ACL Data TX: Handle 14 flags 0x00 dlen 16
L2CAP: Connection Response (0x03) ident 1 len 8
Destination CID: 64
Source CID: 64
Result: Connection successful (0x0000)
Status: No further information available (0x0000) |
| The News and Blog Designer Bundle plugin for WordPress is vulnerable to Local File Inclusion in all versions up to, and including, 1.1 via the template parameter. This makes it possible for unauthenticated attackers to include and execute arbitrary .php files on the server, allowing the execution of any PHP code in those files. This can be used to bypass access controls, obtain sensitive data, or achieve code execution in cases where .php file types can be uploaded and included. |
| In the Linux kernel, the following vulnerability has been resolved:
ovl: fix null pointer dereference in ovl_permission()
Following process:
P1 P2
path_lookupat
link_path_walk
inode_permission
ovl_permission
ovl_i_path_real(inode, &realpath)
path->dentry = ovl_i_dentry_upper(inode)
drop_cache
__dentry_kill(ovl_dentry)
iput(ovl_inode)
ovl_destroy_inode(ovl_inode)
dput(oi->__upperdentry)
dentry_kill(upperdentry)
dentry_unlink_inode
upperdentry->d_inode = NULL
realinode = d_inode(realpath.dentry) // return NULL
inode_permission(realinode)
inode->i_sb // NULL pointer dereference
, will trigger an null pointer dereference at realinode:
[ 335.664979] BUG: kernel NULL pointer dereference,
address: 0000000000000002
[ 335.668032] CPU: 0 PID: 2592 Comm: ls Not tainted 6.3.0
[ 335.669956] RIP: 0010:inode_permission+0x33/0x2c0
[ 335.678939] Call Trace:
[ 335.679165] <TASK>
[ 335.679371] ovl_permission+0xde/0x320
[ 335.679723] inode_permission+0x15e/0x2c0
[ 335.680090] link_path_walk+0x115/0x550
[ 335.680771] path_lookupat.isra.0+0xb2/0x200
[ 335.681170] filename_lookup+0xda/0x240
[ 335.681922] vfs_statx+0xa6/0x1f0
[ 335.682233] vfs_fstatat+0x7b/0xb0
Fetch a reproducer in [Link].
Use the helper ovl_i_path_realinode() to get realinode and then do
non-nullptr checking. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amd/display: Fix possible underflow for displays with large vblank
[Why]
Underflow observed when using a display with a large vblank region
and low refresh rate
[How]
Simplify calculation of vblank_nom
Increase value for VBlankNomDefaultUS to 800us |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: mac80211: check S1G action frame size
Before checking the action code, check that it even
exists in the frame. |
| In the Linux kernel, the following vulnerability has been resolved:
firmware: arm_ffa: Fix FFA device names for logical partitions
Each physical partition can provide multiple services each with UUID.
Each such service can be presented as logical partition with a unique
combination of VM ID and UUID. The number of distinct UUID in a system
will be less than or equal to the number of logical partitions.
However, currently it fails to register more than one logical partition
or service within a physical partition as the device name contains only
VM ID while both VM ID and UUID are maintained in the partition information.
The kernel complains with the below message:
| sysfs: cannot create duplicate filename '/devices/arm-ffa-8001'
| CPU: 1 PID: 1 Comm: swapper/0 Not tainted 6.3.0-rc7 #8
| Hardware name: FVP Base RevC (DT)
| Call trace:
| dump_backtrace+0xf8/0x118
| show_stack+0x18/0x24
| dump_stack_lvl+0x50/0x68
| dump_stack+0x18/0x24
| sysfs_create_dir_ns+0xe0/0x13c
| kobject_add_internal+0x220/0x3d4
| kobject_add+0x94/0x100
| device_add+0x144/0x5d8
| device_register+0x20/0x30
| ffa_device_register+0x88/0xd8
| ffa_setup_partitions+0x108/0x1b8
| ffa_init+0x2ec/0x3a4
| do_one_initcall+0xcc/0x240
| do_initcall_level+0x8c/0xac
| do_initcalls+0x54/0x94
| do_basic_setup+0x1c/0x28
| kernel_init_freeable+0x100/0x16c
| kernel_init+0x20/0x1a0
| ret_from_fork+0x10/0x20
| kobject_add_internal failed for arm-ffa-8001 with -EEXIST, don't try to
| register things with the same name in the same directory.
| arm_ffa arm-ffa: unable to register device arm-ffa-8001 err=-17
| ARM FF-A: ffa_setup_partitions: failed to register partition ID 0x8001
By virtue of being random enough to avoid collisions when generated in a
distributed system, there is no way to compress UUID keys to the number
of bits required to identify each. We can eliminate '-' in the name but
it is not worth eliminating 4 bytes and add unnecessary logic for doing
that. Also v1.0 doesn't provide the UUID of the partitions which makes
it hard to use the same for the device name.
So to keep it simple, let us alloc an ID using ida_alloc() and append the
same to "arm-ffa" to make up a unique device name. Also stash the id value
in ffa_dev to help freeing the ID later when the device is destroyed. |
| Dell Encryption and Dell Security Management Server, versions prior to 11.11.0, contain an Improper Link Resolution Before File Access ('Link Following') Vulnerability. A local malicious user could potentially exploit this vulnerability, leading to privilege escalation. |
| In the Linux kernel, the following vulnerability has been resolved:
firmware: stratix10-svc: Fix a potential resource leak in svc_create_memory_pool()
svc_create_memory_pool() is only called from stratix10_svc_drv_probe().
Most of resources in the probe are managed, but not this memremap() call.
There is also no memunmap() call in the file.
So switch to devm_memremap() to avoid a resource leak. |
| In the Linux kernel, the following vulnerability has been resolved:
cacheinfo: Fix shared_cpu_map to handle shared caches at different levels
The cacheinfo sets up the shared_cpu_map by checking whether the caches
with the same index are shared between CPUs. However, this will trigger
slab-out-of-bounds access if the CPUs do not have the same cache hierarchy.
Another problem is the mismatched shared_cpu_map when the shared cache does
not have the same index between CPUs.
CPU0 I D L3
index 0 1 2 x
^ ^ ^ ^
index 0 1 2 3
CPU1 I D L2 L3
This patch checks each cache is shared with all caches on other CPUs. |
| In the Linux kernel, the following vulnerability has been resolved:
HID: nvidia-shield: Reference hid_device devm allocation of input_dev name
Use hid_device for devm allocation of the input_dev name to avoid a
use-after-free. input_unregister_device would trigger devres cleanup of all
resources associated with the input_dev, free-ing the name. The name would
subsequently be used in a uevent fired at the end of unregistering the
input_dev. |
| In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: use RCU for hci_conn_params and iterate safely in hci_sync
hci_update_accept_list_sync iterates over hdev->pend_le_conns and
hdev->pend_le_reports, and waits for controller events in the loop body,
without holding hdev lock.
Meanwhile, these lists and the items may be modified e.g. by
le_scan_cleanup. This can invalidate the list cursor or any other item
in the list, resulting to invalid behavior (eg use-after-free).
Use RCU for the hci_conn_params action lists. Since the loop bodies in
hci_sync block and we cannot use RCU or hdev->lock for the whole loop,
copy list items first and then iterate on the copy. Only the flags field
is written from elsewhere, so READ_ONCE/WRITE_ONCE should guarantee we
read valid values.
Free params everywhere with hci_conn_params_free so the cleanup is
guaranteed to be done properly.
This fixes the following, which can be triggered e.g. by BlueZ new
mgmt-tester case "Add + Remove Device Nowait - Success", or by changing
hci_le_set_cig_params to always return false, and running iso-tester:
==================================================================
BUG: KASAN: slab-use-after-free in hci_update_passive_scan_sync (net/bluetooth/hci_sync.c:2536 net/bluetooth/hci_sync.c:2723 net/bluetooth/hci_sync.c:2841)
Read of size 8 at addr ffff888001265018 by task kworker/u3:0/32
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.2-1.fc38 04/01/2014
Workqueue: hci0 hci_cmd_sync_work
Call Trace:
<TASK>
dump_stack_lvl (./arch/x86/include/asm/irqflags.h:134 lib/dump_stack.c:107)
print_report (mm/kasan/report.c:320 mm/kasan/report.c:430)
? __virt_addr_valid (./include/linux/mmzone.h:1915 ./include/linux/mmzone.h:2011 arch/x86/mm/physaddr.c:65)
? hci_update_passive_scan_sync (net/bluetooth/hci_sync.c:2536 net/bluetooth/hci_sync.c:2723 net/bluetooth/hci_sync.c:2841)
kasan_report (mm/kasan/report.c:538)
? hci_update_passive_scan_sync (net/bluetooth/hci_sync.c:2536 net/bluetooth/hci_sync.c:2723 net/bluetooth/hci_sync.c:2841)
hci_update_passive_scan_sync (net/bluetooth/hci_sync.c:2536 net/bluetooth/hci_sync.c:2723 net/bluetooth/hci_sync.c:2841)
? __pfx_hci_update_passive_scan_sync (net/bluetooth/hci_sync.c:2780)
? mutex_lock (kernel/locking/mutex.c:282)
? __pfx_mutex_lock (kernel/locking/mutex.c:282)
? __pfx_mutex_unlock (kernel/locking/mutex.c:538)
? __pfx_update_passive_scan_sync (net/bluetooth/hci_sync.c:2861)
hci_cmd_sync_work (net/bluetooth/hci_sync.c:306)
process_one_work (./arch/x86/include/asm/preempt.h:27 kernel/workqueue.c:2399)
worker_thread (./include/linux/list.h:292 kernel/workqueue.c:2538)
? __pfx_worker_thread (kernel/workqueue.c:2480)
kthread (kernel/kthread.c:376)
? __pfx_kthread (kernel/kthread.c:331)
ret_from_fork (arch/x86/entry/entry_64.S:314)
</TASK>
Allocated by task 31:
kasan_save_stack (mm/kasan/common.c:46)
kasan_set_track (mm/kasan/common.c:52)
__kasan_kmalloc (mm/kasan/common.c:374 mm/kasan/common.c:383)
hci_conn_params_add (./include/linux/slab.h:580 ./include/linux/slab.h:720 net/bluetooth/hci_core.c:2277)
hci_connect_le_scan (net/bluetooth/hci_conn.c:1419 net/bluetooth/hci_conn.c:1589)
hci_connect_cis (net/bluetooth/hci_conn.c:2266)
iso_connect_cis (net/bluetooth/iso.c:390)
iso_sock_connect (net/bluetooth/iso.c:899)
__sys_connect (net/socket.c:2003 net/socket.c:2020)
__x64_sys_connect (net/socket.c:2027)
do_syscall_64 (arch/x86/entry/common.c:50 arch/x86/entry/common.c:80)
entry_SYSCALL_64_after_hwframe (arch/x86/entry/entry_64.S:120)
Freed by task 15:
kasan_save_stack (mm/kasan/common.c:46)
kasan_set_track (mm/kasan/common.c:52)
kasan_save_free_info (mm/kasan/generic.c:523)
__kasan_slab_free (mm/kasan/common.c:238 mm/kasan/common.c:200 mm/kasan/common.c:244)
__kmem_cache_free (mm/slub.c:1807 mm/slub.c:3787 mm/slub.c:3800)
hci_conn_params_del (net/bluetooth/hci_core.c:2323)
le_scan_cleanup (net/bluetooth/hci_conn.c:202)
process_one_work (./arch/x86/include/asm/preempt.
---truncated--- |