| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
vfio/pci: Create persistent INTx handler
A vulnerability exists where the eventfd for INTx signaling can be
deconfigured, which unregisters the IRQ handler but still allows
eventfds to be signaled with a NULL context through the SET_IRQS ioctl
or through unmask irqfd if the device interrupt is pending.
Ideally this could be solved with some additional locking; the igate
mutex serializes the ioctl and config space accesses, and the interrupt
handler is unregistered relative to the trigger, but the irqfd path
runs asynchronous to those. The igate mutex cannot be acquired from the
atomic context of the eventfd wake function. Disabling the irqfd
relative to the eventfd registration is potentially incompatible with
existing userspace.
As a result, the solution implemented here moves configuration of the
INTx interrupt handler to track the lifetime of the INTx context object
and irq_type configuration, rather than registration of a particular
trigger eventfd. Synchronization is added between the ioctl path and
eventfd_signal() wrapper such that the eventfd trigger can be
dynamically updated relative to in-flight interrupts or irqfd callbacks. |
| In the Linux kernel, the following vulnerability has been resolved:
vfio/pci: Lock external INTx masking ops
Mask operations through config space changes to DisINTx may race INTx
configuration changes via ioctl. Create wrappers that add locking for
paths outside of the core interrupt code.
In particular, irq_type is updated holding igate, therefore testing
is_intx() requires holding igate. For example clearing DisINTx from
config space can otherwise race changes of the interrupt configuration.
This aligns interfaces which may trigger the INTx eventfd into two
camps, one side serialized by igate and the other only enabled while
INTx is configured. A subsequent patch introduces synchronization for
the latter flows. |
| In the Linux kernel, the following vulnerability has been resolved:
netfilter: nft_chain_filter: handle NETDEV_UNREGISTER for inet/ingress basechain
Remove netdevice from inet/ingress basechain in case NETDEV_UNREGISTER
event is reported, otherwise a stale reference to netdevice remains in
the hook list. |
| In the Linux kernel, the following vulnerability has been resolved:
spi: cadence-qspi: remove system-wide suspend helper calls from runtime PM hooks
The ->runtime_suspend() and ->runtime_resume() callbacks are not
expected to call spi_controller_suspend() and spi_controller_resume().
Remove calls to those in the cadence-qspi driver.
Those helpers have two roles currently:
- They stop/start the queue, including dealing with the kworker.
- They toggle the SPI controller SPI_CONTROLLER_SUSPENDED flag. It
requires acquiring ctlr->bus_lock_mutex.
Step one is irrelevant because cadence-qspi is not queued. Step two
however has two implications:
- A deadlock occurs, because ->runtime_resume() is called in a context
where the lock is already taken (in the ->exec_op() callback, where
the usage count is incremented).
- It would disallow all operations once the device is auto-suspended.
Here is a brief call tree highlighting the mutex deadlock:
spi_mem_exec_op()
...
spi_mem_access_start()
mutex_lock(&ctlr->bus_lock_mutex)
cqspi_exec_mem_op()
pm_runtime_resume_and_get()
cqspi_resume()
spi_controller_resume()
mutex_lock(&ctlr->bus_lock_mutex)
...
spi_mem_access_end()
mutex_unlock(&ctlr->bus_lock_mutex)
... |
| In the Linux kernel, the following vulnerability has been resolved:
net: veth: clear GRO when clearing XDP even when down
veth sets NETIF_F_GRO automatically when XDP is enabled,
because both features use the same NAPI machinery.
The logic to clear NETIF_F_GRO sits in veth_disable_xdp() which
is called both on ndo_stop and when XDP is turned off.
To avoid the flag from being cleared when the device is brought
down, the clearing is skipped when IFF_UP is not set.
Bringing the device down should indeed not modify its features.
Unfortunately, this means that clearing is also skipped when
XDP is disabled _while_ the device is down. And there's nothing
on the open path to bring the device features back into sync.
IOW if user enables XDP, disables it and then brings the device
up we'll end up with a stray GRO flag set but no NAPI instances.
We don't depend on the GRO flag on the datapath, so the datapath
won't crash. We will crash (or hang), however, next time features
are sync'ed (either by user via ethtool or peer changing its config).
The GRO flag will go away, and veth will try to disable the NAPIs.
But the open path never created them since XDP was off, the GRO flag
was a stray. If NAPI was initialized before we'll hang in napi_disable().
If it never was we'll crash trying to stop uninitialized hrtimer.
Move the GRO flag updates to the XDP enable / disable paths,
instead of mixing them with the ndo_open / ndo_close paths. |
| In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: Avoid potential use-after-free in hci_error_reset
While handling the HCI_EV_HARDWARE_ERROR event, if the underlying
BT controller is not responding, the GPIO reset mechanism would
free the hci_dev and lead to a use-after-free in hci_error_reset.
Here's the call trace observed on a ChromeOS device with Intel AX201:
queue_work_on+0x3e/0x6c
__hci_cmd_sync_sk+0x2ee/0x4c0 [bluetooth <HASH:3b4a6>]
? init_wait_entry+0x31/0x31
__hci_cmd_sync+0x16/0x20 [bluetooth <HASH:3b4a 6>]
hci_error_reset+0x4f/0xa4 [bluetooth <HASH:3b4a 6>]
process_one_work+0x1d8/0x33f
worker_thread+0x21b/0x373
kthread+0x13a/0x152
? pr_cont_work+0x54/0x54
? kthread_blkcg+0x31/0x31
ret_from_fork+0x1f/0x30
This patch holds the reference count on the hci_dev while processing
a HCI_EV_HARDWARE_ERROR event to avoid potential crash. |
| In the Linux kernel, the following vulnerability has been resolved:
ASoC: qcom: Fix uninitialized pointer dmactl
In the case where __lpass_get_dmactl_handle is called and the driver
id dai_id is invalid the pointer dmactl is not being assigned a value,
and dmactl contains a garbage value since it has not been initialized
and so the null check may not work. Fix this to initialize dmactl to
NULL. One could argue that modern compilers will set this to zero, but
it is useful to keep this initialized as per the same way in functions
__lpass_platform_codec_intf_init and lpass_cdc_dma_daiops_hw_params.
Cleans up clang scan build warning:
sound/soc/qcom/lpass-cdc-dma.c:275:7: warning: Branch condition
evaluates to a garbage value [core.uninitialized.Branch] |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amd/display: Prevent potential buffer overflow in map_hw_resources
Adds a check in the map_hw_resources function to prevent a potential
buffer overflow. The function was accessing arrays using an index that
could potentially be greater than the size of the arrays, leading to a
buffer overflow.
Adds a check to ensure that the index is within the bounds of the
arrays. If the index is out of bounds, an error message is printed and
break it will continue execution with just ignoring extra data early to
prevent the buffer overflow.
Reported by smatch:
drivers/gpu/drm/amd/amdgpu/../display/dc/dml2/dml2_wrapper.c:79 map_hw_resources() error: buffer overflow 'dml2->v20.scratch.dml_to_dc_pipe_mapping.disp_cfg_to_stream_id' 6 <= 7
drivers/gpu/drm/amd/amdgpu/../display/dc/dml2/dml2_wrapper.c:81 map_hw_resources() error: buffer overflow 'dml2->v20.scratch.dml_to_dc_pipe_mapping.disp_cfg_to_plane_id' 6 <= 7 |
| In the Linux kernel, the following vulnerability has been resolved:
drivers: perf: ctr_get_width function for legacy is not defined
With parameters CONFIG_RISCV_PMU_LEGACY=y and CONFIG_RISCV_PMU_SBI=n
linux kernel crashes when you try perf record:
$ perf record ls
[ 46.749286] Unable to handle kernel NULL pointer dereference at virtual address 0000000000000000
[ 46.750199] Oops [#1]
[ 46.750342] Modules linked in:
[ 46.750608] CPU: 0 PID: 107 Comm: perf-exec Not tainted 6.6.0 #2
[ 46.750906] Hardware name: riscv-virtio,qemu (DT)
[ 46.751184] epc : 0x0
[ 46.751430] ra : arch_perf_update_userpage+0x54/0x13e
[ 46.751680] epc : 0000000000000000 ra : ffffffff8072ee52 sp : ff2000000022b8f0
[ 46.751958] gp : ffffffff81505988 tp : ff6000000290d400 t0 : ff2000000022b9c0
[ 46.752229] t1 : 0000000000000001 t2 : 0000000000000003 s0 : ff2000000022b930
[ 46.752451] s1 : ff600000028fb000 a0 : 0000000000000000 a1 : ff600000028fb000
[ 46.752673] a2 : 0000000ae2751268 a3 : 00000000004fb708 a4 : 0000000000000004
[ 46.752895] a5 : 0000000000000000 a6 : 000000000017ffe3 a7 : 00000000000000d2
[ 46.753117] s2 : ff600000028fb000 s3 : 0000000ae2751268 s4 : 0000000000000000
[ 46.753338] s5 : ffffffff8153e290 s6 : ff600000863b9000 s7 : ff60000002961078
[ 46.753562] s8 : ff60000002961048 s9 : ff60000002961058 s10: 0000000000000001
[ 46.753783] s11: 0000000000000018 t3 : ffffffffffffffff t4 : ffffffffffffffff
[ 46.754005] t5 : ff6000000292270c t6 : ff2000000022bb30
[ 46.754179] status: 0000000200000100 badaddr: 0000000000000000 cause: 000000000000000c
[ 46.754653] Code: Unable to access instruction at 0xffffffffffffffec.
[ 46.754939] ---[ end trace 0000000000000000 ]---
[ 46.755131] note: perf-exec[107] exited with irqs disabled
[ 46.755546] note: perf-exec[107] exited with preempt_count 4
This happens because in the legacy case the ctr_get_width function was not
defined, but it is used in arch_perf_update_userpage.
Also remove extra check in riscv_pmu_ctr_get_width_mask |
| In the Linux kernel, the following vulnerability has been resolved:
riscv: Sparse-Memory/vmemmap out-of-bounds fix
Offset vmemmap so that the first page of vmemmap will be mapped
to the first page of physical memory in order to ensure that
vmemmap’s bounds will be respected during
pfn_to_page()/page_to_pfn() operations.
The conversion macros will produce correct SV39/48/57 addresses
for every possible/valid DRAM_BASE inside the physical memory limits.
v2:Address Alex's comments |
| In the Linux kernel, the following vulnerability has been resolved:
gtp: fix use-after-free and null-ptr-deref in gtp_newlink()
The gtp_link_ops operations structure for the subsystem must be
registered after registering the gtp_net_ops pernet operations structure.
Syzkaller hit 'general protection fault in gtp_genl_dump_pdp' bug:
[ 1010.702740] gtp: GTP module unloaded
[ 1010.715877] general protection fault, probably for non-canonical address 0xdffffc0000000001: 0000 [#1] SMP KASAN NOPTI
[ 1010.715888] KASAN: null-ptr-deref in range [0x0000000000000008-0x000000000000000f]
[ 1010.715895] CPU: 1 PID: 128616 Comm: a.out Not tainted 6.8.0-rc6-std-def-alt1 #1
[ 1010.715899] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.0-alt1 04/01/2014
[ 1010.715908] RIP: 0010:gtp_newlink+0x4d7/0x9c0 [gtp]
[ 1010.715915] Code: 80 3c 02 00 0f 85 41 04 00 00 48 8b bb d8 05 00 00 e8 ed f6 ff ff 48 89 c2 48 89 c5 48 b8 00 00 00 00 00 fc ff df 48 c1 ea 03 <80> 3c 02 00 0f 85 4f 04 00 00 4c 89 e2 4c 8b 6d 00 48 b8 00 00 00
[ 1010.715920] RSP: 0018:ffff888020fbf180 EFLAGS: 00010203
[ 1010.715929] RAX: dffffc0000000000 RBX: ffff88800399c000 RCX: 0000000000000000
[ 1010.715933] RDX: 0000000000000001 RSI: ffffffff84805280 RDI: 0000000000000282
[ 1010.715938] RBP: 000000000000000d R08: 0000000000000001 R09: 0000000000000000
[ 1010.715942] R10: 0000000000000001 R11: 0000000000000001 R12: ffff88800399cc80
[ 1010.715947] R13: 0000000000000000 R14: 0000000000000000 R15: 0000000000000400
[ 1010.715953] FS: 00007fd1509ab5c0(0000) GS:ffff88805b300000(0000) knlGS:0000000000000000
[ 1010.715958] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 1010.715962] CR2: 0000000000000000 CR3: 000000001c07a000 CR4: 0000000000750ee0
[ 1010.715968] PKRU: 55555554
[ 1010.715972] Call Trace:
[ 1010.715985] ? __die_body.cold+0x1a/0x1f
[ 1010.715995] ? die_addr+0x43/0x70
[ 1010.716002] ? exc_general_protection+0x199/0x2f0
[ 1010.716016] ? asm_exc_general_protection+0x1e/0x30
[ 1010.716026] ? gtp_newlink+0x4d7/0x9c0 [gtp]
[ 1010.716034] ? gtp_net_exit+0x150/0x150 [gtp]
[ 1010.716042] __rtnl_newlink+0x1063/0x1700
[ 1010.716051] ? rtnl_setlink+0x3c0/0x3c0
[ 1010.716063] ? is_bpf_text_address+0xc0/0x1f0
[ 1010.716070] ? kernel_text_address.part.0+0xbb/0xd0
[ 1010.716076] ? __kernel_text_address+0x56/0xa0
[ 1010.716084] ? unwind_get_return_address+0x5a/0xa0
[ 1010.716091] ? create_prof_cpu_mask+0x30/0x30
[ 1010.716098] ? arch_stack_walk+0x9e/0xf0
[ 1010.716106] ? stack_trace_save+0x91/0xd0
[ 1010.716113] ? stack_trace_consume_entry+0x170/0x170
[ 1010.716121] ? __lock_acquire+0x15c5/0x5380
[ 1010.716139] ? mark_held_locks+0x9e/0xe0
[ 1010.716148] ? kmem_cache_alloc_trace+0x35f/0x3c0
[ 1010.716155] ? __rtnl_newlink+0x1700/0x1700
[ 1010.716160] rtnl_newlink+0x69/0xa0
[ 1010.716166] rtnetlink_rcv_msg+0x43b/0xc50
[ 1010.716172] ? rtnl_fdb_dump+0x9f0/0x9f0
[ 1010.716179] ? lock_acquire+0x1fe/0x560
[ 1010.716188] ? netlink_deliver_tap+0x12f/0xd50
[ 1010.716196] netlink_rcv_skb+0x14d/0x440
[ 1010.716202] ? rtnl_fdb_dump+0x9f0/0x9f0
[ 1010.716208] ? netlink_ack+0xab0/0xab0
[ 1010.716213] ? netlink_deliver_tap+0x202/0xd50
[ 1010.716220] ? netlink_deliver_tap+0x218/0xd50
[ 1010.716226] ? __virt_addr_valid+0x30b/0x590
[ 1010.716233] netlink_unicast+0x54b/0x800
[ 1010.716240] ? netlink_attachskb+0x870/0x870
[ 1010.716248] ? __check_object_size+0x2de/0x3b0
[ 1010.716254] netlink_sendmsg+0x938/0xe40
[ 1010.716261] ? netlink_unicast+0x800/0x800
[ 1010.716269] ? __import_iovec+0x292/0x510
[ 1010.716276] ? netlink_unicast+0x800/0x800
[ 1010.716284] __sock_sendmsg+0x159/0x190
[ 1010.716290] ____sys_sendmsg+0x712/0x880
[ 1010.716297] ? sock_write_iter+0x3d0/0x3d0
[ 1010.716304] ? __ia32_sys_recvmmsg+0x270/0x270
[ 1010.716309] ? lock_acquire+0x1fe/0x560
[ 1010.716315] ? drain_array_locked+0x90/0x90
[ 1010.716324] ___sys_sendmsg+0xf8/0x170
[ 1010.716331] ? sendmsg_copy_msghdr+0x170/0x170
[ 1010.716337] ? lockdep_init_map
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
dmaengine: fsl-qdma: fix SoC may hang on 16 byte unaligned read
There is chip (ls1028a) errata:
The SoC may hang on 16 byte unaligned read transactions by QDMA.
Unaligned read transactions initiated by QDMA may stall in the NOC
(Network On-Chip), causing a deadlock condition. Stalled transactions will
trigger completion timeouts in PCIe controller.
Workaround:
Enable prefetch by setting the source descriptor prefetchable bit
( SD[PF] = 1 ).
Implement this workaround. |
| In the Linux kernel, the following vulnerability has been resolved:
crypto: arm64/neonbs - fix out-of-bounds access on short input
The bit-sliced implementation of AES-CTR operates on blocks of 128
bytes, and will fall back to the plain NEON version for tail blocks or
inputs that are shorter than 128 bytes to begin with.
It will call straight into the plain NEON asm helper, which performs all
memory accesses in granules of 16 bytes (the size of a NEON register).
For this reason, the associated plain NEON glue code will copy inputs
shorter than 16 bytes into a temporary buffer, given that this is a rare
occurrence and it is not worth the effort to work around this in the asm
code.
The fallback from the bit-sliced NEON version fails to take this into
account, potentially resulting in out-of-bounds accesses. So clone the
same workaround, and use a temp buffer for short in/outputs. |
| In the Linux kernel, the following vulnerability has been resolved:
dmaengine: fsl-qdma: init irq after reg initialization
Initialize the qDMA irqs after the registers are configured so that
interrupts that may have been pending from a primary kernel don't get
processed by the irq handler before it is ready to and cause panic with
the following trace:
Call trace:
fsl_qdma_queue_handler+0xf8/0x3e8
__handle_irq_event_percpu+0x78/0x2b0
handle_irq_event_percpu+0x1c/0x68
handle_irq_event+0x44/0x78
handle_fasteoi_irq+0xc8/0x178
generic_handle_irq+0x24/0x38
__handle_domain_irq+0x90/0x100
gic_handle_irq+0x5c/0xb8
el1_irq+0xb8/0x180
_raw_spin_unlock_irqrestore+0x14/0x40
__setup_irq+0x4bc/0x798
request_threaded_irq+0xd8/0x190
devm_request_threaded_irq+0x74/0xe8
fsl_qdma_probe+0x4d4/0xca8
platform_drv_probe+0x50/0xa0
really_probe+0xe0/0x3f8
driver_probe_device+0x64/0x130
device_driver_attach+0x6c/0x78
__driver_attach+0xbc/0x158
bus_for_each_dev+0x5c/0x98
driver_attach+0x20/0x28
bus_add_driver+0x158/0x220
driver_register+0x60/0x110
__platform_driver_register+0x44/0x50
fsl_qdma_driver_init+0x18/0x20
do_one_initcall+0x48/0x258
kernel_init_freeable+0x1a4/0x23c
kernel_init+0x10/0xf8
ret_from_fork+0x10/0x18 |
| In the Linux kernel, the following vulnerability has been resolved:
mmc: mmci: stm32: fix DMA API overlapping mappings warning
Turning on CONFIG_DMA_API_DEBUG_SG results in the following warning:
DMA-API: mmci-pl18x 48220000.mmc: cacheline tracking EEXIST,
overlapping mappings aren't supported
WARNING: CPU: 1 PID: 51 at kernel/dma/debug.c:568
add_dma_entry+0x234/0x2f4
Modules linked in:
CPU: 1 PID: 51 Comm: kworker/1:2 Not tainted 6.1.28 #1
Hardware name: STMicroelectronics STM32MP257F-EV1 Evaluation Board (DT)
Workqueue: events_freezable mmc_rescan
Call trace:
add_dma_entry+0x234/0x2f4
debug_dma_map_sg+0x198/0x350
__dma_map_sg_attrs+0xa0/0x110
dma_map_sg_attrs+0x10/0x2c
sdmmc_idma_prep_data+0x80/0xc0
mmci_prep_data+0x38/0x84
mmci_start_data+0x108/0x2dc
mmci_request+0xe4/0x190
__mmc_start_request+0x68/0x140
mmc_start_request+0x94/0xc0
mmc_wait_for_req+0x70/0x100
mmc_send_tuning+0x108/0x1ac
sdmmc_execute_tuning+0x14c/0x210
mmc_execute_tuning+0x48/0xec
mmc_sd_init_uhs_card.part.0+0x208/0x464
mmc_sd_init_card+0x318/0x89c
mmc_attach_sd+0xe4/0x180
mmc_rescan+0x244/0x320
DMA API debug brings to light leaking dma-mappings as dma_map_sg and
dma_unmap_sg are not correctly balanced.
If an error occurs in mmci_cmd_irq function, only mmci_dma_error
function is called and as this API is not managed on stm32 variant,
dma_unmap_sg is never called in this error path. |
| In the Linux kernel, the following vulnerability has been resolved:
iommufd: Fix iopt_access_list_id overwrite bug
Syzkaller reported the following WARN_ON:
WARNING: CPU: 1 PID: 4738 at drivers/iommu/iommufd/io_pagetable.c:1360
Call Trace:
iommufd_access_change_ioas+0x2fe/0x4e0
iommufd_access_destroy_object+0x50/0xb0
iommufd_object_remove+0x2a3/0x490
iommufd_object_destroy_user
iommufd_access_destroy+0x71/0xb0
iommufd_test_staccess_release+0x89/0xd0
__fput+0x272/0xb50
__fput_sync+0x4b/0x60
__do_sys_close
__se_sys_close
__x64_sys_close+0x8b/0x110
do_syscall_x64
The mismatch between the access pointer in the list and the passed-in
pointer is resulting from an overwrite of access->iopt_access_list_id, in
iopt_add_access(). Called from iommufd_access_change_ioas() when
xa_alloc() succeeds but iopt_calculate_iova_alignment() fails.
Add a new_id in iopt_add_access() and only update iopt_access_list_id when
returning successfully. |
| In the Linux kernel, the following vulnerability has been resolved:
iommufd: Fix protection fault in iommufd_test_syz_conv_iova
Syzkaller reported the following bug:
general protection fault, probably for non-canonical address 0xdffffc0000000038: 0000 [#1] SMP KASAN
KASAN: null-ptr-deref in range [0x00000000000001c0-0x00000000000001c7]
Call Trace:
lock_acquire
lock_acquire+0x1ce/0x4f0
down_read+0x93/0x4a0
iommufd_test_syz_conv_iova+0x56/0x1f0
iommufd_test_access_rw.isra.0+0x2ec/0x390
iommufd_test+0x1058/0x1e30
iommufd_fops_ioctl+0x381/0x510
vfs_ioctl
__do_sys_ioctl
__se_sys_ioctl
__x64_sys_ioctl+0x170/0x1e0
do_syscall_x64
do_syscall_64+0x71/0x140
This is because the new iommufd_access_change_ioas() sets access->ioas to
NULL during its process, so the lock might be gone in a concurrent racing
context.
Fix this by doing the same access->ioas sanity as iommufd_access_rw() and
iommufd_access_pin_pages() functions do. |
| In the Linux kernel, the following vulnerability has been resolved:
pmdomain: arm: Fix NULL dereference on scmi_perf_domain removal
On unloading of the scmi_perf_domain module got the below splat, when in
the DT provided to the system under test the '#power-domain-cells' property
was missing. Indeed, this particular setup causes the probe to bail out
early without giving any error, which leads to the ->remove() callback gets
to run too, but without all the expected initialized structures in place.
Add a check and bail out early on remove too.
Call trace:
scmi_perf_domain_remove+0x28/0x70 [scmi_perf_domain]
scmi_dev_remove+0x28/0x40 [scmi_core]
device_remove+0x54/0x90
device_release_driver_internal+0x1dc/0x240
driver_detach+0x58/0xa8
bus_remove_driver+0x78/0x108
driver_unregister+0x38/0x70
scmi_driver_unregister+0x28/0x180 [scmi_core]
scmi_perf_domain_driver_exit+0x18/0xb78 [scmi_perf_domain]
__arm64_sys_delete_module+0x1a8/0x2c0
invoke_syscall+0x50/0x128
el0_svc_common.constprop.0+0x48/0xf0
do_el0_svc+0x24/0x38
el0_svc+0x34/0xb8
el0t_64_sync_handler+0x100/0x130
el0t_64_sync+0x190/0x198
Code: a90153f3 f9403c14 f9414800 955f8a05 (b9400a80)
---[ end trace 0000000000000000 ]--- |
| In the Linux kernel, the following vulnerability has been resolved:
mptcp: fix double-free on socket dismantle
when MPTCP server accepts an incoming connection, it clones its listener
socket. However, the pointer to 'inet_opt' for the new socket has the same
value as the original one: as a consequence, on program exit it's possible
to observe the following splat:
BUG: KASAN: double-free in inet_sock_destruct+0x54f/0x8b0
Free of addr ffff888485950880 by task swapper/25/0
CPU: 25 PID: 0 Comm: swapper/25 Kdump: loaded Not tainted 6.8.0-rc1+ #609
Hardware name: Supermicro SYS-6027R-72RF/X9DRH-7TF/7F/iTF/iF, BIOS 3.0 07/26/2013
Call Trace:
<IRQ>
dump_stack_lvl+0x32/0x50
print_report+0xca/0x620
kasan_report_invalid_free+0x64/0x90
__kasan_slab_free+0x1aa/0x1f0
kfree+0xed/0x2e0
inet_sock_destruct+0x54f/0x8b0
__sk_destruct+0x48/0x5b0
rcu_do_batch+0x34e/0xd90
rcu_core+0x559/0xac0
__do_softirq+0x183/0x5a4
irq_exit_rcu+0x12d/0x170
sysvec_apic_timer_interrupt+0x6b/0x80
</IRQ>
<TASK>
asm_sysvec_apic_timer_interrupt+0x16/0x20
RIP: 0010:cpuidle_enter_state+0x175/0x300
Code: 30 00 0f 84 1f 01 00 00 83 e8 01 83 f8 ff 75 e5 48 83 c4 18 44 89 e8 5b 5d 41 5c 41 5d 41 5e 41 5f c3 cc cc cc cc fb 45 85 ed <0f> 89 60 ff ff ff 48 c1 e5 06 48 c7 43 18 00 00 00 00 48 83 44 2b
RSP: 0018:ffff888481cf7d90 EFLAGS: 00000202
RAX: 0000000000000000 RBX: ffff88887facddc8 RCX: 0000000000000000
RDX: 1ffff1110ff588b1 RSI: 0000000000000019 RDI: ffff88887fac4588
RBP: 0000000000000004 R08: 0000000000000002 R09: 0000000000043080
R10: 0009b02ea273363f R11: ffff88887fabf42b R12: ffffffff932592e0
R13: 0000000000000004 R14: 0000000000000000 R15: 00000022c880ec80
cpuidle_enter+0x4a/0xa0
do_idle+0x310/0x410
cpu_startup_entry+0x51/0x60
start_secondary+0x211/0x270
secondary_startup_64_no_verify+0x184/0x18b
</TASK>
Allocated by task 6853:
kasan_save_stack+0x1c/0x40
kasan_save_track+0x10/0x30
__kasan_kmalloc+0xa6/0xb0
__kmalloc+0x1eb/0x450
cipso_v4_sock_setattr+0x96/0x360
netlbl_sock_setattr+0x132/0x1f0
selinux_netlbl_socket_post_create+0x6c/0x110
selinux_socket_post_create+0x37b/0x7f0
security_socket_post_create+0x63/0xb0
__sock_create+0x305/0x450
__sys_socket_create.part.23+0xbd/0x130
__sys_socket+0x37/0xb0
__x64_sys_socket+0x6f/0xb0
do_syscall_64+0x83/0x160
entry_SYSCALL_64_after_hwframe+0x6e/0x76
Freed by task 6858:
kasan_save_stack+0x1c/0x40
kasan_save_track+0x10/0x30
kasan_save_free_info+0x3b/0x60
__kasan_slab_free+0x12c/0x1f0
kfree+0xed/0x2e0
inet_sock_destruct+0x54f/0x8b0
__sk_destruct+0x48/0x5b0
subflow_ulp_release+0x1f0/0x250
tcp_cleanup_ulp+0x6e/0x110
tcp_v4_destroy_sock+0x5a/0x3a0
inet_csk_destroy_sock+0x135/0x390
tcp_fin+0x416/0x5c0
tcp_data_queue+0x1bc8/0x4310
tcp_rcv_state_process+0x15a3/0x47b0
tcp_v4_do_rcv+0x2c1/0x990
tcp_v4_rcv+0x41fb/0x5ed0
ip_protocol_deliver_rcu+0x6d/0x9f0
ip_local_deliver_finish+0x278/0x360
ip_local_deliver+0x182/0x2c0
ip_rcv+0xb5/0x1c0
__netif_receive_skb_one_core+0x16e/0x1b0
process_backlog+0x1e3/0x650
__napi_poll+0xa6/0x500
net_rx_action+0x740/0xbb0
__do_softirq+0x183/0x5a4
The buggy address belongs to the object at ffff888485950880
which belongs to the cache kmalloc-64 of size 64
The buggy address is located 0 bytes inside of
64-byte region [ffff888485950880, ffff8884859508c0)
The buggy address belongs to the physical page:
page:0000000056d1e95e refcount:1 mapcount:0 mapping:0000000000000000 index:0xffff888485950700 pfn:0x485950
flags: 0x57ffffc0000800(slab|node=1|zone=2|lastcpupid=0x1fffff)
page_type: 0xffffffff()
raw: 0057ffffc0000800 ffff88810004c640 ffffea00121b8ac0 dead000000000006
raw: ffff888485950700 0000000000200019 00000001ffffffff 0000000000000000
page dumped because: kasan: bad access detected
Memory state around the buggy address:
ffff888485950780: fa fb fb
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
mptcp: fix possible deadlock in subflow diag
Syzbot and Eric reported a lockdep splat in the subflow diag:
WARNING: possible circular locking dependency detected
6.8.0-rc4-syzkaller-00212-g40b9385dd8e6 #0 Not tainted
syz-executor.2/24141 is trying to acquire lock:
ffff888045870130 (k-sk_lock-AF_INET6){+.+.}-{0:0}, at:
tcp_diag_put_ulp net/ipv4/tcp_diag.c:100 [inline]
ffff888045870130 (k-sk_lock-AF_INET6){+.+.}-{0:0}, at:
tcp_diag_get_aux+0x738/0x830 net/ipv4/tcp_diag.c:137
but task is already holding lock:
ffffc9000135e488 (&h->lhash2[i].lock){+.+.}-{2:2}, at: spin_lock
include/linux/spinlock.h:351 [inline]
ffffc9000135e488 (&h->lhash2[i].lock){+.+.}-{2:2}, at:
inet_diag_dump_icsk+0x39f/0x1f80 net/ipv4/inet_diag.c:1038
which lock already depends on the new lock.
the existing dependency chain (in reverse order) is:
-> #1 (&h->lhash2[i].lock){+.+.}-{2:2}:
lock_acquire+0x1e3/0x530 kernel/locking/lockdep.c:5754
__raw_spin_lock include/linux/spinlock_api_smp.h:133 [inline]
_raw_spin_lock+0x2e/0x40 kernel/locking/spinlock.c:154
spin_lock include/linux/spinlock.h:351 [inline]
__inet_hash+0x335/0xbe0 net/ipv4/inet_hashtables.c:743
inet_csk_listen_start+0x23a/0x320 net/ipv4/inet_connection_sock.c:1261
__inet_listen_sk+0x2a2/0x770 net/ipv4/af_inet.c:217
inet_listen+0xa3/0x110 net/ipv4/af_inet.c:239
rds_tcp_listen_init+0x3fd/0x5a0 net/rds/tcp_listen.c:316
rds_tcp_init_net+0x141/0x320 net/rds/tcp.c:577
ops_init+0x352/0x610 net/core/net_namespace.c:136
__register_pernet_operations net/core/net_namespace.c:1214 [inline]
register_pernet_operations+0x2cb/0x660 net/core/net_namespace.c:1283
register_pernet_device+0x33/0x80 net/core/net_namespace.c:1370
rds_tcp_init+0x62/0xd0 net/rds/tcp.c:735
do_one_initcall+0x238/0x830 init/main.c:1236
do_initcall_level+0x157/0x210 init/main.c:1298
do_initcalls+0x3f/0x80 init/main.c:1314
kernel_init_freeable+0x42f/0x5d0 init/main.c:1551
kernel_init+0x1d/0x2a0 init/main.c:1441
ret_from_fork+0x4b/0x80 arch/x86/kernel/process.c:147
ret_from_fork_asm+0x1b/0x30 arch/x86/entry/entry_64.S:242
-> #0 (k-sk_lock-AF_INET6){+.+.}-{0:0}:
check_prev_add kernel/locking/lockdep.c:3134 [inline]
check_prevs_add kernel/locking/lockdep.c:3253 [inline]
validate_chain+0x18ca/0x58e0 kernel/locking/lockdep.c:3869
__lock_acquire+0x1345/0x1fd0 kernel/locking/lockdep.c:5137
lock_acquire+0x1e3/0x530 kernel/locking/lockdep.c:5754
lock_sock_fast include/net/sock.h:1723 [inline]
subflow_get_info+0x166/0xd20 net/mptcp/diag.c:28
tcp_diag_put_ulp net/ipv4/tcp_diag.c:100 [inline]
tcp_diag_get_aux+0x738/0x830 net/ipv4/tcp_diag.c:137
inet_sk_diag_fill+0x10ed/0x1e00 net/ipv4/inet_diag.c:345
inet_diag_dump_icsk+0x55b/0x1f80 net/ipv4/inet_diag.c:1061
__inet_diag_dump+0x211/0x3a0 net/ipv4/inet_diag.c:1263
inet_diag_dump_compat+0x1c1/0x2d0 net/ipv4/inet_diag.c:1371
netlink_dump+0x59b/0xc80 net/netlink/af_netlink.c:2264
__netlink_dump_start+0x5df/0x790 net/netlink/af_netlink.c:2370
netlink_dump_start include/linux/netlink.h:338 [inline]
inet_diag_rcv_msg_compat+0x209/0x4c0 net/ipv4/inet_diag.c:1405
sock_diag_rcv_msg+0xe7/0x410
netlink_rcv_skb+0x1e3/0x430 net/netlink/af_netlink.c:2543
sock_diag_rcv+0x2a/0x40 net/core/sock_diag.c:280
netlink_unicast_kernel net/netlink/af_netlink.c:1341 [inline]
netlink_unicast+0x7ea/0x980 net/netlink/af_netlink.c:1367
netlink_sendmsg+0xa3b/0xd70 net/netlink/af_netlink.c:1908
sock_sendmsg_nosec net/socket.c:730 [inline]
__sock_sendmsg+0x221/0x270 net/socket.c:745
____sys_sendmsg+0x525/0x7d0 net/socket.c:2584
___sys_sendmsg net/socket.c:2638 [inline]
__sys_sendmsg+0x2b0/0x3a0 net/socket.c:2667
do_syscall_64+0xf9/0x240
entry_SYSCALL_64_after_hwframe+0x6f/0x77
As noted by Eric we can break the lock dependency chain avoid
dumping
---truncated--- |