| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
media: v4l: async: Properly re-initialise notifier entry in unregister
The notifier_entry of a notifier is not re-initialised after unregistering
the notifier. This leads to dangling pointers being left there so use
list_del_init() to return the notifier_entry an empty list. |
| In the Linux kernel, the following vulnerability has been resolved:
KVM: SVM: WARN on vNMI + NMI window iff NMIs are outright masked
When requesting an NMI window, WARN on vNMI support being enabled if and
only if NMIs are actually masked, i.e. if the vCPU is already handling an
NMI. KVM's ABI for NMIs that arrive simultanesouly (from KVM's point of
view) is to inject one NMI and pend the other. When using vNMI, KVM pends
the second NMI simply by setting V_NMI_PENDING, and lets the CPU do the
rest (hardware automatically sets V_NMI_BLOCKING when an NMI is injected).
However, if KVM can't immediately inject an NMI, e.g. because the vCPU is
in an STI shadow or is running with GIF=0, then KVM will request an NMI
window and trigger the WARN (but still function correctly).
Whether or not the GIF=0 case makes sense is debatable, as the intent of
KVM's behavior is to provide functionality that is as close to real
hardware as possible. E.g. if two NMIs are sent in quick succession, the
probability of both NMIs arriving in an STI shadow is infinitesimally low
on real hardware, but significantly larger in a virtual environment, e.g.
if the vCPU is preempted in the STI shadow. For GIF=0, the argument isn't
as clear cut, because the window where two NMIs can collide is much larger
in bare metal (though still small).
That said, KVM should not have divergent behavior for the GIF=0 case based
on whether or not vNMI support is enabled. And KVM has allowed
simultaneous NMIs with GIF=0 for over a decade, since commit 7460fb4a3400
("KVM: Fix simultaneous NMIs"). I.e. KVM's GIF=0 handling shouldn't be
modified without a *really* good reason to do so, and if KVM's behavior
were to be modified, it should be done irrespective of vNMI support. |
| In the Linux kernel, the following vulnerability has been resolved:
media: mc: Fix graph walk in media_pipeline_start
The graph walk tries to follow all links, even if they are not between
pads. This causes a crash with, e.g. a MEDIA_LNK_FL_ANCILLARY_LINK link.
Fix this by allowing the walk to proceed only for MEDIA_LNK_FL_DATA_LINK
links. |
| In the Linux kernel, the following vulnerability has been resolved:
crypto: starfive - Do not free stack buffer
RSA text data uses variable length buffer allocated in software stack.
Calling kfree on it causes undefined behaviour in subsequent operations. |
| In the Linux kernel, the following vulnerability has been resolved:
mm/hugetlb: do not call vma_add_reservation upon ENOMEM
sysbot reported a splat [1] on __unmap_hugepage_range(). This is because
vma_needs_reservation() can return -ENOMEM if
allocate_file_region_entries() fails to allocate the file_region struct
for the reservation.
Check for that and do not call vma_add_reservation() if that is the case,
otherwise region_abort() and region_del() will see that we do not have any
file_regions.
If we detect that vma_needs_reservation() returned -ENOMEM, we clear the
hugetlb_restore_reserve flag as if this reservation was still consumed, so
free_huge_folio() will not increment the resv count.
[1] https://lore.kernel.org/linux-mm/0000000000004096100617c58d54@google.com/T/#ma5983bc1ab18a54910da83416b3f89f3c7ee43aa |
| In the Linux kernel, the following vulnerability has been resolved:
ASoC: SOF: ipc4-topology: Fix input format query of process modules without base extension
If a process module does not have base config extension then the same
format applies to all of it's inputs and the process->base_config_ext is
NULL, causing NULL dereference when specifically crafted topology and
sequences used. |
| In the Linux kernel, the following vulnerability has been resolved:
thermal/drivers/qcom/lmh: Check for SCM availability at probe
Up until now, the necessary scm availability check has not been
performed, leading to possible null pointer dereferences (which did
happen for me on RB1).
Fix that. |
| In the Linux kernel, the following vulnerability has been resolved:
media: mgb4: Fix double debugfs remove
Fixes an error where debugfs_remove_recursive() is called first on a parent
directory and then again on a child which causes a kernel panic.
[hverkuil: added Fixes/Cc tags] |
| In the Linux kernel, the following vulnerability has been resolved:
media: v4l: async: Fix notifier list entry init
struct v4l2_async_notifier has several list_head members, but only
waiting_list and done_list are initialized. notifier_entry was kept
'zeroed' leading to an uninitialized list_head.
This results in a NULL-pointer dereference if csi2_async_register() fails,
e.g. node for remote endpoint is disabled, and returns -ENOTCONN.
The following calls to v4l2_async_nf_unregister() results in a NULL
pointer dereference.
Add the missing list head initializer. |
| In the Linux kernel, the following vulnerability has been resolved:
clk: bcm: dvp: Assign ->num before accessing ->hws
Commit f316cdff8d67 ("clk: Annotate struct clk_hw_onecell_data with
__counted_by") annotated the hws member of 'struct clk_hw_onecell_data'
with __counted_by, which informs the bounds sanitizer about the number
of elements in hws, so that it can warn when hws is accessed out of
bounds. As noted in that change, the __counted_by member must be
initialized with the number of elements before the first array access
happens, otherwise there will be a warning from each access prior to the
initialization because the number of elements is zero. This occurs in
clk_dvp_probe() due to ->num being assigned after ->hws has been
accessed:
UBSAN: array-index-out-of-bounds in drivers/clk/bcm/clk-bcm2711-dvp.c:59:2
index 0 is out of range for type 'struct clk_hw *[] __counted_by(num)' (aka 'struct clk_hw *[]')
Move the ->num initialization to before the first access of ->hws, which
clears up the warning. |
| In the Linux kernel, the following vulnerability has been resolved:
clk: bcm: rpi: Assign ->num before accessing ->hws
Commit f316cdff8d67 ("clk: Annotate struct clk_hw_onecell_data with
__counted_by") annotated the hws member of 'struct clk_hw_onecell_data'
with __counted_by, which informs the bounds sanitizer about the number
of elements in hws, so that it can warn when hws is accessed out of
bounds. As noted in that change, the __counted_by member must be
initialized with the number of elements before the first array access
happens, otherwise there will be a warning from each access prior to the
initialization because the number of elements is zero. This occurs in
raspberrypi_discover_clocks() due to ->num being assigned after ->hws
has been accessed:
UBSAN: array-index-out-of-bounds in drivers/clk/bcm/clk-raspberrypi.c:374:4
index 3 is out of range for type 'struct clk_hw *[] __counted_by(num)' (aka 'struct clk_hw *[]')
Move the ->num initialization to before the first access of ->hws, which
clears up the warning. |
| In the Linux kernel, the following vulnerability has been resolved:
net/9p: fix uninit-value in p9_client_rpc()
Syzbot with the help of KMSAN reported the following error:
BUG: KMSAN: uninit-value in trace_9p_client_res include/trace/events/9p.h:146 [inline]
BUG: KMSAN: uninit-value in p9_client_rpc+0x1314/0x1340 net/9p/client.c:754
trace_9p_client_res include/trace/events/9p.h:146 [inline]
p9_client_rpc+0x1314/0x1340 net/9p/client.c:754
p9_client_create+0x1551/0x1ff0 net/9p/client.c:1031
v9fs_session_init+0x1b9/0x28e0 fs/9p/v9fs.c:410
v9fs_mount+0xe2/0x12b0 fs/9p/vfs_super.c:122
legacy_get_tree+0x114/0x290 fs/fs_context.c:662
vfs_get_tree+0xa7/0x570 fs/super.c:1797
do_new_mount+0x71f/0x15e0 fs/namespace.c:3352
path_mount+0x742/0x1f20 fs/namespace.c:3679
do_mount fs/namespace.c:3692 [inline]
__do_sys_mount fs/namespace.c:3898 [inline]
__se_sys_mount+0x725/0x810 fs/namespace.c:3875
__x64_sys_mount+0xe4/0x150 fs/namespace.c:3875
do_syscall_64+0xd5/0x1f0
entry_SYSCALL_64_after_hwframe+0x6d/0x75
Uninit was created at:
__alloc_pages+0x9d6/0xe70 mm/page_alloc.c:4598
__alloc_pages_node include/linux/gfp.h:238 [inline]
alloc_pages_node include/linux/gfp.h:261 [inline]
alloc_slab_page mm/slub.c:2175 [inline]
allocate_slab mm/slub.c:2338 [inline]
new_slab+0x2de/0x1400 mm/slub.c:2391
___slab_alloc+0x1184/0x33d0 mm/slub.c:3525
__slab_alloc mm/slub.c:3610 [inline]
__slab_alloc_node mm/slub.c:3663 [inline]
slab_alloc_node mm/slub.c:3835 [inline]
kmem_cache_alloc+0x6d3/0xbe0 mm/slub.c:3852
p9_tag_alloc net/9p/client.c:278 [inline]
p9_client_prepare_req+0x20a/0x1770 net/9p/client.c:641
p9_client_rpc+0x27e/0x1340 net/9p/client.c:688
p9_client_create+0x1551/0x1ff0 net/9p/client.c:1031
v9fs_session_init+0x1b9/0x28e0 fs/9p/v9fs.c:410
v9fs_mount+0xe2/0x12b0 fs/9p/vfs_super.c:122
legacy_get_tree+0x114/0x290 fs/fs_context.c:662
vfs_get_tree+0xa7/0x570 fs/super.c:1797
do_new_mount+0x71f/0x15e0 fs/namespace.c:3352
path_mount+0x742/0x1f20 fs/namespace.c:3679
do_mount fs/namespace.c:3692 [inline]
__do_sys_mount fs/namespace.c:3898 [inline]
__se_sys_mount+0x725/0x810 fs/namespace.c:3875
__x64_sys_mount+0xe4/0x150 fs/namespace.c:3875
do_syscall_64+0xd5/0x1f0
entry_SYSCALL_64_after_hwframe+0x6d/0x75
If p9_check_errors() fails early in p9_client_rpc(), req->rc.tag
will not be properly initialized. However, trace_9p_client_res()
ends up trying to print it out anyway before p9_client_rpc()
finishes.
Fix this issue by assigning default values to p9_fcall fields
such as 'tag' and (just in case KMSAN unearths something new) 'id'
during the tag allocation stage. |
| In the Linux kernel, the following vulnerability has been resolved:
iio: adc: PAC1934: fix accessing out of bounds array index
Fix accessing out of bounds array index for average
current and voltage measurements. The device itself has
only 4 channels, but in sysfs there are "fake"
channels for the average voltages and currents too. |
| In the Linux kernel, the following vulnerability has been resolved:
watchdog: cpu5wdt.c: Fix use-after-free bug caused by cpu5wdt_trigger
When the cpu5wdt module is removing, the origin code uses del_timer() to
de-activate the timer. If the timer handler is running, del_timer() could
not stop it and will return directly. If the port region is released by
release_region() and then the timer handler cpu5wdt_trigger() calls outb()
to write into the region that is released, the use-after-free bug will
happen.
Change del_timer() to timer_shutdown_sync() in order that the timer handler
could be finished before the port region is released. |
| In the Linux kernel, the following vulnerability has been resolved:
usb: gadget: u_audio: Fix race condition use of controls after free during gadget unbind.
Hang on to the control IDs instead of pointers since those are correctly
handled with locks. |
| In the Linux kernel, the following vulnerability has been resolved:
fs/ntfs3: Check 'folio' pointer for NULL
It can be NULL if bmap is called. |
| In the Linux kernel, the following vulnerability has been resolved:
fs/ntfs3: Use variable length array instead of fixed size
Should fix smatch warning:
ntfs_set_label() error: __builtin_memcpy() 'uni->name' too small (20 vs 256) |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: carl9170: re-fix fortified-memset warning
The carl9170_tx_release() function sometimes triggers a fortified-memset
warning in my randconfig builds:
In file included from include/linux/string.h:254,
from drivers/net/wireless/ath/carl9170/tx.c:40:
In function 'fortify_memset_chk',
inlined from 'carl9170_tx_release' at drivers/net/wireless/ath/carl9170/tx.c:283:2,
inlined from 'kref_put' at include/linux/kref.h:65:3,
inlined from 'carl9170_tx_put_skb' at drivers/net/wireless/ath/carl9170/tx.c:342:9:
include/linux/fortify-string.h:493:25: error: call to '__write_overflow_field' declared with attribute warning: detected write beyond size of field (1st parameter); maybe use struct_group()? [-Werror=attribute-warning]
493 | __write_overflow_field(p_size_field, size);
Kees previously tried to avoid this by using memset_after(), but it seems
this does not fully address the problem. I noticed that the memset_after()
here is done on a different part of the union (status) than the original
cast was from (rate_driver_data), which may confuse the compiler.
Unfortunately, the memset_after() trick does not work on driver_rates[]
because that is part of an anonymous struct, and I could not get
struct_group() to do this either. Using two separate memset() calls
on the two members does address the warning though. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: mt76: connac: check for null before dereferencing
The wcid can be NULL. It should be checked for validity before
dereferencing it to avoid crash. |
| In the Linux kernel, the following vulnerability has been resolved:
net/mlx5e: Fix netif state handling
mlx5e_suspend cleans resources only if netif_device_present() returns
true. However, mlx5e_resume changes the state of netif, via
mlx5e_nic_enable, only if reg_state == NETREG_REGISTERED.
In the below case, the above leads to NULL-ptr Oops[1] and memory
leaks:
mlx5e_probe
_mlx5e_resume
mlx5e_attach_netdev
mlx5e_nic_enable <-- netdev not reg, not calling netif_device_attach()
register_netdev <-- failed for some reason.
ERROR_FLOW:
_mlx5e_suspend <-- netif_device_present return false, resources aren't freed :(
Hence, clean resources in this case as well.
[1]
BUG: kernel NULL pointer dereference, address: 0000000000000000
PGD 0 P4D 0
Oops: 0010 [#1] SMP
CPU: 2 PID: 9345 Comm: test-ovs-ct-gen Not tainted 6.5.0_for_upstream_min_debug_2023_09_05_16_01 #1
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014
RIP: 0010:0x0
Code: Unable to access opcode bytes at0xffffffffffffffd6.
RSP: 0018:ffff888178aaf758 EFLAGS: 00010246
Call Trace:
<TASK>
? __die+0x20/0x60
? page_fault_oops+0x14c/0x3c0
? exc_page_fault+0x75/0x140
? asm_exc_page_fault+0x22/0x30
notifier_call_chain+0x35/0xb0
blocking_notifier_call_chain+0x3d/0x60
mlx5_blocking_notifier_call_chain+0x22/0x30 [mlx5_core]
mlx5_core_uplink_netdev_event_replay+0x3e/0x60 [mlx5_core]
mlx5_mdev_netdev_track+0x53/0x60 [mlx5_ib]
mlx5_ib_roce_init+0xc3/0x340 [mlx5_ib]
__mlx5_ib_add+0x34/0xd0 [mlx5_ib]
mlx5r_probe+0xe1/0x210 [mlx5_ib]
? auxiliary_match_id+0x6a/0x90
auxiliary_bus_probe+0x38/0x80
? driver_sysfs_add+0x51/0x80
really_probe+0xc9/0x3e0
? driver_probe_device+0x90/0x90
__driver_probe_device+0x80/0x160
driver_probe_device+0x1e/0x90
__device_attach_driver+0x7d/0x100
bus_for_each_drv+0x80/0xd0
__device_attach+0xbc/0x1f0
bus_probe_device+0x86/0xa0
device_add+0x637/0x840
__auxiliary_device_add+0x3b/0xa0
add_adev+0xc9/0x140 [mlx5_core]
mlx5_rescan_drivers_locked+0x22a/0x310 [mlx5_core]
mlx5_register_device+0x53/0xa0 [mlx5_core]
mlx5_init_one_devl_locked+0x5c4/0x9c0 [mlx5_core]
mlx5_init_one+0x3b/0x60 [mlx5_core]
probe_one+0x44c/0x730 [mlx5_core]
local_pci_probe+0x3e/0x90
pci_device_probe+0xbf/0x210
? kernfs_create_link+0x5d/0xa0
? sysfs_do_create_link_sd+0x60/0xc0
really_probe+0xc9/0x3e0
? driver_probe_device+0x90/0x90
__driver_probe_device+0x80/0x160
driver_probe_device+0x1e/0x90
__device_attach_driver+0x7d/0x100
bus_for_each_drv+0x80/0xd0
__device_attach+0xbc/0x1f0
pci_bus_add_device+0x54/0x80
pci_iov_add_virtfn+0x2e6/0x320
sriov_enable+0x208/0x420
mlx5_core_sriov_configure+0x9e/0x200 [mlx5_core]
sriov_numvfs_store+0xae/0x1a0
kernfs_fop_write_iter+0x10c/0x1a0
vfs_write+0x291/0x3c0
ksys_write+0x5f/0xe0
do_syscall_64+0x3d/0x90
entry_SYSCALL_64_after_hwframe+0x46/0xb0
CR2: 0000000000000000
---[ end trace 0000000000000000 ]--- |