| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
netkit: Assign missing bpf_net_context
During the introduction of struct bpf_net_context handling for
XDP-redirect, the netkit driver has been missed, which also requires it
because NETKIT_REDIRECT invokes skb_do_redirect() which is accessing the
per-CPU variables. Otherwise we see the following crash:
BUG: kernel NULL pointer dereference, address: 0000000000000038
bpf_redirect()
netkit_xmit()
dev_hard_start_xmit()
Set the bpf_net_context before invoking netkit_xmit() program within the
netkit driver. |
| In the Linux kernel, the following vulnerability has been resolved:
bpf, lsm: Add check for BPF LSM return value
A bpf prog returning a positive number attached to file_alloc_security
hook makes kernel panic.
This happens because file system can not filter out the positive number
returned by the LSM prog using IS_ERR, and misinterprets this positive
number as a file pointer.
Given that hook file_alloc_security never returned positive number
before the introduction of BPF LSM, and other BPF LSM hooks may
encounter similar issues, this patch adds LSM return value check
in verifier, to ensure no unexpected value is returned. |
| In the Linux kernel, the following vulnerability has been resolved:
bpf: Fail verification for sign-extension of packet data/data_end/data_meta
syzbot reported a kernel crash due to
commit 1f1e864b6555 ("bpf: Handle sign-extenstin ctx member accesses").
The reason is due to sign-extension of 32-bit load for
packet data/data_end/data_meta uapi field.
The original code looks like:
r2 = *(s32 *)(r1 + 76) /* load __sk_buff->data */
r3 = *(u32 *)(r1 + 80) /* load __sk_buff->data_end */
r0 = r2
r0 += 8
if r3 > r0 goto +1
...
Note that __sk_buff->data load has 32-bit sign extension.
After verification and convert_ctx_accesses(), the final asm code looks like:
r2 = *(u64 *)(r1 +208)
r2 = (s32)r2
r3 = *(u64 *)(r1 +80)
r0 = r2
r0 += 8
if r3 > r0 goto pc+1
...
Note that 'r2 = (s32)r2' may make the kernel __sk_buff->data address invalid
which may cause runtime failure.
Currently, in C code, typically we have
void *data = (void *)(long)skb->data;
void *data_end = (void *)(long)skb->data_end;
...
and it will generate
r2 = *(u64 *)(r1 +208)
r3 = *(u64 *)(r1 +80)
r0 = r2
r0 += 8
if r3 > r0 goto pc+1
If we allow sign-extension,
void *data = (void *)(long)(int)skb->data;
void *data_end = (void *)(long)skb->data_end;
...
the generated code looks like
r2 = *(u64 *)(r1 +208)
r2 <<= 32
r2 s>>= 32
r3 = *(u64 *)(r1 +80)
r0 = r2
r0 += 8
if r3 > r0 goto pc+1
and this will cause verification failure since "r2 <<= 32" is not allowed
as "r2" is a packet pointer.
To fix this issue for case
r2 = *(s32 *)(r1 + 76) /* load __sk_buff->data */
this patch added additional checking in is_valid_access() callback
function for packet data/data_end/data_meta access. If those accesses
are with sign-extenstion, the verification will fail.
[1] https://lore.kernel.org/bpf/000000000000c90eee061d236d37@google.com/ |
| In the Linux kernel, the following vulnerability has been resolved:
ext4: check stripe size compatibility on remount as well
We disable stripe size in __ext4_fill_super if it is not a multiple of
the cluster ratio however this check is missed when trying to remount.
This can leave us with cases where stripe < cluster_ratio after
remount:set making EXT4_B2C(sbi->s_stripe) become 0 that can cause some
unforeseen bugs like divide by 0.
Fix that by adding the check in remount path as well. |
| In the Linux kernel, the following vulnerability has been resolved:
IB/mlx5: Fix UMR pd cleanup on error flow of driver init
The cited commit moves the pd allocation from function
mlx5r_umr_resource_cleanup() to a new function mlx5r_umr_cleanup().
So the fix in commit [1] is broken. In error flow, will hit panic [2].
Fix it by checking pd pointer to avoid panic if it is NULL;
[1] RDMA/mlx5: Fix UMR cleanup on error flow of driver init
[2]
[ 347.567063] infiniband mlx5_0: Couldn't register device with driver model
[ 347.591382] BUG: kernel NULL pointer dereference, address: 0000000000000020
[ 347.593438] #PF: supervisor read access in kernel mode
[ 347.595176] #PF: error_code(0x0000) - not-present page
[ 347.596962] PGD 0 P4D 0
[ 347.601361] RIP: 0010:ib_dealloc_pd_user+0x12/0xc0 [ib_core]
[ 347.604171] RSP: 0018:ffff888106293b10 EFLAGS: 00010282
[ 347.604834] RAX: 0000000000000000 RBX: 000000000000000e RCX: 0000000000000000
[ 347.605672] RDX: ffff888106293ad0 RSI: 0000000000000000 RDI: 0000000000000000
[ 347.606529] RBP: 0000000000000000 R08: ffff888106293ae0 R09: ffff888106293ae0
[ 347.607379] R10: 0000000000000a06 R11: 0000000000000000 R12: 0000000000000000
[ 347.608224] R13: ffffffffa0704dc0 R14: 0000000000000001 R15: 0000000000000001
[ 347.609067] FS: 00007fdc720cd9c0(0000) GS:ffff88852c880000(0000) knlGS:0000000000000000
[ 347.610094] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 347.610727] CR2: 0000000000000020 CR3: 0000000103012003 CR4: 0000000000370eb0
[ 347.611421] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[ 347.612113] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
[ 347.612804] Call Trace:
[ 347.613130] <TASK>
[ 347.613417] ? __die+0x20/0x60
[ 347.613793] ? page_fault_oops+0x150/0x3e0
[ 347.614243] ? free_msg+0x68/0x80 [mlx5_core]
[ 347.614840] ? cmd_exec+0x48f/0x11d0 [mlx5_core]
[ 347.615359] ? exc_page_fault+0x74/0x130
[ 347.615808] ? asm_exc_page_fault+0x22/0x30
[ 347.616273] ? ib_dealloc_pd_user+0x12/0xc0 [ib_core]
[ 347.616801] mlx5r_umr_cleanup+0x23/0x90 [mlx5_ib]
[ 347.617365] mlx5_ib_stage_pre_ib_reg_umr_cleanup+0x36/0x40 [mlx5_ib]
[ 347.618025] __mlx5_ib_add+0x96/0xd0 [mlx5_ib]
[ 347.618539] mlx5r_probe+0xe9/0x310 [mlx5_ib]
[ 347.619032] ? kernfs_add_one+0x107/0x150
[ 347.619478] ? __mlx5_ib_add+0xd0/0xd0 [mlx5_ib]
[ 347.619984] auxiliary_bus_probe+0x3e/0x90
[ 347.620448] really_probe+0xc5/0x3a0
[ 347.620857] __driver_probe_device+0x80/0x160
[ 347.621325] driver_probe_device+0x1e/0x90
[ 347.621770] __driver_attach+0xec/0x1c0
[ 347.622213] ? __device_attach_driver+0x100/0x100
[ 347.622724] bus_for_each_dev+0x71/0xc0
[ 347.623151] bus_add_driver+0xed/0x240
[ 347.623570] driver_register+0x58/0x100
[ 347.623998] __auxiliary_driver_register+0x6a/0xc0
[ 347.624499] ? driver_register+0xae/0x100
[ 347.624940] ? 0xffffffffa0893000
[ 347.625329] mlx5_ib_init+0x16a/0x1e0 [mlx5_ib]
[ 347.625845] do_one_initcall+0x4a/0x2a0
[ 347.626273] ? gcov_event+0x2e2/0x3a0
[ 347.626706] do_init_module+0x8a/0x260
[ 347.627126] init_module_from_file+0x8b/0xd0
[ 347.627596] __x64_sys_finit_module+0x1ca/0x2f0
[ 347.628089] do_syscall_64+0x4c/0x100 |
| In the Linux kernel, the following vulnerability has been resolved:
f2fs: fix to avoid use-after-free in f2fs_stop_gc_thread()
syzbot reports a f2fs bug as below:
__dump_stack lib/dump_stack.c:88 [inline]
dump_stack_lvl+0x241/0x360 lib/dump_stack.c:114
print_report+0xe8/0x550 mm/kasan/report.c:491
kasan_report+0x143/0x180 mm/kasan/report.c:601
kasan_check_range+0x282/0x290 mm/kasan/generic.c:189
instrument_atomic_read_write include/linux/instrumented.h:96 [inline]
atomic_fetch_add_relaxed include/linux/atomic/atomic-instrumented.h:252 [inline]
__refcount_add include/linux/refcount.h:184 [inline]
__refcount_inc include/linux/refcount.h:241 [inline]
refcount_inc include/linux/refcount.h:258 [inline]
get_task_struct include/linux/sched/task.h:118 [inline]
kthread_stop+0xca/0x630 kernel/kthread.c:704
f2fs_stop_gc_thread+0x65/0xb0 fs/f2fs/gc.c:210
f2fs_do_shutdown+0x192/0x540 fs/f2fs/file.c:2283
f2fs_ioc_shutdown fs/f2fs/file.c:2325 [inline]
__f2fs_ioctl+0x443a/0xbe60 fs/f2fs/file.c:4325
vfs_ioctl fs/ioctl.c:51 [inline]
__do_sys_ioctl fs/ioctl.c:907 [inline]
__se_sys_ioctl+0xfc/0x170 fs/ioctl.c:893
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0xf3/0x230 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x77/0x7f
The root cause is below race condition, it may cause use-after-free
issue in sbi->gc_th pointer.
- remount
- f2fs_remount
- f2fs_stop_gc_thread
- kfree(gc_th)
- f2fs_ioc_shutdown
- f2fs_do_shutdown
- f2fs_stop_gc_thread
- kthread_stop(gc_th->f2fs_gc_task)
: sbi->gc_thread = NULL;
We will call f2fs_do_shutdown() in two paths:
- for f2fs_ioc_shutdown() path, we should grab sb->s_umount semaphore
for fixing.
- for f2fs_shutdown() path, it's safe since caller has already grabbed
sb->s_umount semaphore. |
| In the Linux kernel, the following vulnerability has been resolved:
vdpa/mlx5: Fix invalid mr resource destroy
Certain error paths from mlx5_vdpa_dev_add() can end up releasing mr
resources which never got initialized in the first place.
This patch adds the missing check in mlx5_vdpa_destroy_mr_resources()
to block releasing non-initialized mr resources.
Reference trace:
mlx5_core 0000:08:00.2: mlx5_vdpa_dev_add:3274:(pid 2700) warning: No mac address provisioned?
BUG: kernel NULL pointer dereference, address: 0000000000000000
#PF: supervisor read access in kernel mode
#PF: error_code(0x0000) - not-present page
PGD 140216067 P4D 0
Oops: 0000 [#1] PREEMPT SMP NOPTI
CPU: 8 PID: 2700 Comm: vdpa Kdump: loaded Not tainted 5.14.0-496.el9.x86_64 #1
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014
RIP: 0010:vhost_iotlb_del_range+0xf/0xe0 [vhost_iotlb]
Code: [...]
RSP: 0018:ff1c823ac23077f0 EFLAGS: 00010246
RAX: ffffffffc1a21a60 RBX: ffffffff899567a0 RCX: 0000000000000000
RDX: ffffffffffffffff RSI: 0000000000000000 RDI: 0000000000000000
RBP: ff1bda1f7c21e800 R08: 0000000000000000 R09: ff1c823ac2307670
R10: ff1c823ac2307668 R11: ffffffff8a9e7b68 R12: 0000000000000000
R13: 0000000000000000 R14: ff1bda1f43e341a0 R15: 00000000ffffffea
FS: 00007f56eba7c740(0000) GS:ff1bda269f800000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000000000 CR3: 0000000104d90001 CR4: 0000000000771ef0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
PKRU: 55555554
Call Trace:
? show_trace_log_lvl+0x1c4/0x2df
? show_trace_log_lvl+0x1c4/0x2df
? mlx5_vdpa_free+0x3d/0x150 [mlx5_vdpa]
? __die_body.cold+0x8/0xd
? page_fault_oops+0x134/0x170
? __irq_work_queue_local+0x2b/0xc0
? irq_work_queue+0x2c/0x50
? exc_page_fault+0x62/0x150
? asm_exc_page_fault+0x22/0x30
? __pfx_mlx5_vdpa_free+0x10/0x10 [mlx5_vdpa]
? vhost_iotlb_del_range+0xf/0xe0 [vhost_iotlb]
mlx5_vdpa_free+0x3d/0x150 [mlx5_vdpa]
vdpa_release_dev+0x1e/0x50 [vdpa]
device_release+0x31/0x90
kobject_cleanup+0x37/0x130
mlx5_vdpa_dev_add+0x2d2/0x7a0 [mlx5_vdpa]
vdpa_nl_cmd_dev_add_set_doit+0x277/0x4c0 [vdpa]
genl_family_rcv_msg_doit+0xd9/0x130
genl_family_rcv_msg+0x14d/0x220
? __pfx_vdpa_nl_cmd_dev_add_set_doit+0x10/0x10 [vdpa]
? _copy_to_user+0x1a/0x30
? move_addr_to_user+0x4b/0xe0
genl_rcv_msg+0x47/0xa0
? __import_iovec+0x46/0x150
? __pfx_genl_rcv_msg+0x10/0x10
netlink_rcv_skb+0x54/0x100
genl_rcv+0x24/0x40
netlink_unicast+0x245/0x370
netlink_sendmsg+0x206/0x440
__sys_sendto+0x1dc/0x1f0
? do_read_fault+0x10c/0x1d0
? do_pte_missing+0x10d/0x190
__x64_sys_sendto+0x20/0x30
do_syscall_64+0x5c/0xf0
? __count_memcg_events+0x4f/0xb0
? mm_account_fault+0x6c/0x100
? handle_mm_fault+0x116/0x270
? do_user_addr_fault+0x1d6/0x6a0
? do_syscall_64+0x6b/0xf0
? clear_bhb_loop+0x25/0x80
? clear_bhb_loop+0x25/0x80
? clear_bhb_loop+0x25/0x80
? clear_bhb_loop+0x25/0x80
? clear_bhb_loop+0x25/0x80
entry_SYSCALL_64_after_hwframe+0x78/0x80 |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: mt76: mt7996: fix NULL pointer dereference in mt7996_mcu_sta_bfer_he
Fix the NULL pointer dereference in mt7996_mcu_sta_bfer_he
routine adding an sta interface to the mt7996 driver.
Found by code review. |
| In the Linux kernel, the following vulnerability has been resolved:
f2fs: check discard support for conventional zones
As the helper function f2fs_bdev_support_discard() shows, f2fs checks if
the target block devices support discard by calling
bdev_max_discard_sectors() and bdev_is_zoned(). This check works well
for most cases, but it does not work for conventional zones on zoned
block devices. F2fs assumes that zoned block devices support discard,
and calls __submit_discard_cmd(). When __submit_discard_cmd() is called
for sequential write required zones, it works fine since
__submit_discard_cmd() issues zone reset commands instead of discard
commands. However, when __submit_discard_cmd() is called for
conventional zones, __blkdev_issue_discard() is called even when the
devices do not support discard.
The inappropriate __blkdev_issue_discard() call was not a problem before
the commit 30f1e7241422 ("block: move discard checks into the ioctl
handler") because __blkdev_issue_discard() checked if the target devices
support discard or not. If not, it returned EOPNOTSUPP. After the
commit, __blkdev_issue_discard() no longer checks it. It always returns
zero and sets NULL to the given bio pointer. This NULL pointer triggers
f2fs_bug_on() in __submit_discard_cmd(). The BUG is recreated with the
commands below at the umount step, where /dev/nullb0 is a zoned null_blk
with 5GB total size, 128MB zone size and 10 conventional zones.
$ mkfs.f2fs -f -m /dev/nullb0
$ mount /dev/nullb0 /mnt
$ for ((i=0;i<5;i++)); do dd if=/dev/zero of=/mnt/test bs=65536 count=1600 conv=fsync; done
$ umount /mnt
To fix the BUG, avoid the inappropriate __blkdev_issue_discard() call.
When discard is requested for conventional zones, check if the device
supports discard or not. If not, return EOPNOTSUPP. |
| In the Linux kernel, the following vulnerability has been resolved:
exfat: resolve memory leak from exfat_create_upcase_table()
If exfat_load_upcase_table reaches end and returns -EINVAL,
allocated memory doesn't get freed and while
exfat_load_default_upcase_table allocates more memory, leading to a
memory leak.
Here's link to syzkaller crash report illustrating this issue:
https://syzkaller.appspot.com/text?tag=CrashReport&x=1406c201980000 |
| In the Linux kernel, the following vulnerability has been resolved:
mm/hugetlb.c: fix UAF of vma in hugetlb fault pathway
Syzbot reports a UAF in hugetlb_fault(). This happens because
vmf_anon_prepare() could drop the per-VMA lock and allow the current VMA
to be freed before hugetlb_vma_unlock_read() is called.
We can fix this by using a modified version of vmf_anon_prepare() that
doesn't release the VMA lock on failure, and then release it ourselves
after hugetlb_vma_unlock_read(). |
| In the Linux kernel, the following vulnerability has been resolved:
bpf: Fix use-after-free in bpf_uprobe_multi_link_attach()
If bpf_link_prime() fails, bpf_uprobe_multi_link_attach() goes to the
error_free label and frees the array of bpf_uprobe's without calling
bpf_uprobe_unregister().
This leaks bpf_uprobe->uprobe and worse, this frees bpf_uprobe->consumer
without removing it from the uprobe->consumers list. |
| In the Linux kernel, the following vulnerability has been resolved:
spi: hisi-kunpeng: Add verification for the max_frequency provided by the firmware
If the value of max_speed_hz is 0, it may cause a division by zero
error in hisi_calc_effective_speed().
The value of max_speed_hz is provided by firmware.
Firmware is generally considered as a trusted domain. However, as
division by zero errors can cause system failure, for defense measure,
the value of max_speed is validated here. So 0 is regarded as invalid
and an error code is returned. |
| In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: btintel_pcie: Allocate memory for driver private data
Fix driver not allocating memory for struct btintel_data which is used
to store internal data. |
| In the Linux kernel, the following vulnerability has been resolved:
firmware: qcom: uefisecapp: Fix deadlock in qcuefi_acquire()
If the __qcuefi pointer is not set, then in the original code, we would
hold onto the lock. That means that if we tried to set it later, then
it would cause a deadlock. Drop the lock on the error path. That's
what all the callers are expecting. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/xe/client: fix deadlock in show_meminfo()
There is a real deadlock as well as sleeping in atomic() bug in here, if
the bo put happens to be the last ref, since bo destruction wants to
grab the same spinlock and sleeping locks. Fix that by dropping the ref
using xe_bo_put_deferred(), and moving the final commit outside of the
lock. Dropping the lock around the put is tricky since the bo can go
out of scope and delete itself from the list, making it difficult to
navigate to the next list entry.
(cherry picked from commit 0083b8e6f11d7662283a267d4ce7c966812ffd8a) |
| In the Linux kernel, the following vulnerability has been resolved:
drm/xe/client: add missing bo locking in show_meminfo()
bo_meminfo() wants to inspect bo state like tt and the ttm resource,
however this state can change at any point leading to stuff like NPD and
UAF, if the bo lock is not held. Grab the bo lock when calling
bo_meminfo(), ensuring we drop any spinlocks first. In the case of
object_idr we now also need to hold a ref.
v2 (MattB)
- Also add xe_bo_assert_held()
(cherry picked from commit 4f63d712fa104c3ebefcb289d1e733e86d8698c7) |
| In the Linux kernel, the following vulnerability has been resolved:
x86/hyperv: fix kexec crash due to VP assist page corruption
commit 9636be85cc5b ("x86/hyperv: Fix hyperv_pcpu_input_arg handling when
CPUs go online/offline") introduces a new cpuhp state for hyperv
initialization.
cpuhp_setup_state() returns the state number if state is
CPUHP_AP_ONLINE_DYN or CPUHP_BP_PREPARE_DYN and 0 for all other states.
For the hyperv case, since a new cpuhp state was introduced it would
return 0. However, in hv_machine_shutdown(), the cpuhp_remove_state() call
is conditioned upon "hyperv_init_cpuhp > 0". This will never be true and
so hv_cpu_die() won't be called on all CPUs. This means the VP assist page
won't be reset. When the kexec kernel tries to setup the VP assist page
again, the hypervisor corrupts the memory region of the old VP assist page
causing a panic in case the kexec kernel is using that memory elsewhere.
This was originally fixed in commit dfe94d4086e4 ("x86/hyperv: Fix kexec
panic/hang issues").
Get rid of hyperv_init_cpuhp entirely since we are no longer using a
dynamic cpuhp state and use CPUHP_AP_HYPERV_ONLINE directly with
cpuhp_remove_state(). |
| In the Linux kernel, the following vulnerability has been resolved:
ASoC: Intel: soc-acpi-intel-lnl-match: add missing empty item
There is no links_num in struct snd_soc_acpi_mach {}, and we test
!link->num_adr as a condition to end the loop in hda_sdw_machine_select().
So an empty item in struct snd_soc_acpi_link_adr array is required. |
| In the Linux kernel, the following vulnerability has been resolved:
ASoC: Intel: soc-acpi-intel-mtl-match: add missing empty item
There is no links_num in struct snd_soc_acpi_mach {}, and we test
!link->num_adr as a condition to end the loop in hda_sdw_machine_select().
So an empty item in struct snd_soc_acpi_link_adr array is required. |