| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
arm64/sme: Always exit sme_alloc() early with existing storage
When sme_alloc() is called with existing storage and we are not flushing we
will always allocate new storage, both leaking the existing storage and
corrupting the state. Fix this by separating the checks for flushing and
for existing storage as we do for SVE.
Callers that reallocate (eg, due to changing the vector length) should
call sme_free() themselves. |
| linux-pam (aka Linux PAM) before 1.6.0 allows attackers to cause a denial of service (blocked login process) via mkfifo because the openat call (for protect_dir) lacks O_DIRECTORY. |
| In the Linux kernel, the following vulnerability has been resolved:
ibmvnic: Use kernel helpers for hex dumps
Previously, when the driver was printing hex dumps, the buffer was cast
to an 8 byte long and printed using string formatters. If the buffer
size was not a multiple of 8 then a read buffer overflow was possible.
Therefore, create a new ibmvnic function that loops over a buffer and
calls hex_dump_to_buffer instead.
This patch address KASAN reports like the one below:
ibmvnic 30000003 env3: Login Buffer:
ibmvnic 30000003 env3: 01000000af000000
<...>
ibmvnic 30000003 env3: 2e6d62692e736261
ibmvnic 30000003 env3: 65050003006d6f63
==================================================================
BUG: KASAN: slab-out-of-bounds in ibmvnic_login+0xacc/0xffc [ibmvnic]
Read of size 8 at addr c0000001331a9aa8 by task ip/17681
<...>
Allocated by task 17681:
<...>
ibmvnic_login+0x2f0/0xffc [ibmvnic]
ibmvnic_open+0x148/0x308 [ibmvnic]
__dev_open+0x1ac/0x304
<...>
The buggy address is located 168 bytes inside of
allocated 175-byte region [c0000001331a9a00, c0000001331a9aaf)
<...>
=================================================================
ibmvnic 30000003 env3: 000000000033766e |
| In the Linux kernel, the following vulnerability has been resolved:
ptp: Fix possible memory leak in ptp_clock_register()
I got memory leak as follows when doing fault injection test:
unreferenced object 0xffff88800906c618 (size 8):
comm "i2c-idt82p33931", pid 4421, jiffies 4294948083 (age 13.188s)
hex dump (first 8 bytes):
70 74 70 30 00 00 00 00 ptp0....
backtrace:
[<00000000312ed458>] __kmalloc_track_caller+0x19f/0x3a0
[<0000000079f6e2ff>] kvasprintf+0xb5/0x150
[<0000000026aae54f>] kvasprintf_const+0x60/0x190
[<00000000f323a5f7>] kobject_set_name_vargs+0x56/0x150
[<000000004e35abdd>] dev_set_name+0xc0/0x100
[<00000000f20cfe25>] ptp_clock_register+0x9f4/0xd30 [ptp]
[<000000008bb9f0de>] idt82p33_probe.cold+0x8b6/0x1561 [ptp_idt82p33]
When posix_clock_register() returns an error, the name allocated
in dev_set_name() will be leaked, the put_device() should be used
to give up the device reference, then the name will be freed in
kobject_cleanup() and other memory will be freed in ptp_clock_release(). |
| In the Linux kernel, the following vulnerability has been resolved:
RDMA/rxe: Return CQE error if invalid lkey was supplied
RXE is missing update of WQE status in LOCAL_WRITE failures. This caused
the following kernel panic if someone sent an atomic operation with an
explicitly wrong lkey.
[leonro@vm ~]$ mkt test
test_atomic_invalid_lkey (tests.test_atomic.AtomicTest) ...
WARNING: CPU: 5 PID: 263 at drivers/infiniband/sw/rxe/rxe_comp.c:740 rxe_completer+0x1a6d/0x2e30 [rdma_rxe]
Modules linked in: crc32_generic rdma_rxe ip6_udp_tunnel udp_tunnel rdma_ucm rdma_cm ib_umad ib_ipoib iw_cm ib_cm mlx5_ib ib_uverbs ib_core mlx5_core ptp pps_core
CPU: 5 PID: 263 Comm: python3 Not tainted 5.13.0-rc1+ #2936
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014
RIP: 0010:rxe_completer+0x1a6d/0x2e30 [rdma_rxe]
Code: 03 0f 8e 65 0e 00 00 3b 93 10 06 00 00 0f 84 82 0a 00 00 4c 89 ff 4c 89 44 24 38 e8 2d 74 a9 e1 4c 8b 44 24 38 e9 1c f5 ff ff <0f> 0b e9 0c e8 ff ff b8 05 00 00 00 41 bf 05 00 00 00 e9 ab e7 ff
RSP: 0018:ffff8880158af090 EFLAGS: 00010246
RAX: 0000000000000000 RBX: ffff888016a78000 RCX: ffffffffa0cf1652
RDX: 1ffff9200004b442 RSI: 0000000000000004 RDI: ffffc9000025a210
RBP: dffffc0000000000 R08: 00000000ffffffea R09: ffff88801617740b
R10: ffffed1002c2ee81 R11: 0000000000000007 R12: ffff88800f3b63e8
R13: ffff888016a78008 R14: ffffc9000025a180 R15: 000000000000000c
FS: 00007f88b622a740(0000) GS:ffff88806d540000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f88b5a1fa10 CR3: 000000000d848004 CR4: 0000000000370ea0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
rxe_do_task+0x130/0x230 [rdma_rxe]
rxe_rcv+0xb11/0x1df0 [rdma_rxe]
rxe_loopback+0x157/0x1e0 [rdma_rxe]
rxe_responder+0x5532/0x7620 [rdma_rxe]
rxe_do_task+0x130/0x230 [rdma_rxe]
rxe_rcv+0x9c8/0x1df0 [rdma_rxe]
rxe_loopback+0x157/0x1e0 [rdma_rxe]
rxe_requester+0x1efd/0x58c0 [rdma_rxe]
rxe_do_task+0x130/0x230 [rdma_rxe]
rxe_post_send+0x998/0x1860 [rdma_rxe]
ib_uverbs_post_send+0xd5f/0x1220 [ib_uverbs]
ib_uverbs_write+0x847/0xc80 [ib_uverbs]
vfs_write+0x1c5/0x840
ksys_write+0x176/0x1d0
do_syscall_64+0x3f/0x80
entry_SYSCALL_64_after_hwframe+0x44/0xae |
| ETERNUS SF provided by Fsas Technologies Inc. contains an incorrect default permissions vulnerability. A low-privileged user with access to the management server may obtain database credentials, potentially allowing execution of OS commands with administrator privileges. |
| In the Linux kernel, the following vulnerability has been resolved:
bpf: Fix array bounds error with may_goto
may_goto uses an additional 8 bytes on the stack, which causes the
interpreters[] array to go out of bounds when calculating index by
stack_size.
1. If a BPF program is rewritten, re-evaluate the stack size. For non-JIT
cases, reject loading directly.
2. For non-JIT cases, calculating interpreters[idx] may still cause
out-of-bounds array access, and just warn about it.
3. For jit_requested cases, the execution of bpf_func also needs to be
warned. So move the definition of function __bpf_prog_ret0_warn out of
the macro definition CONFIG_BPF_JIT_ALWAYS_ON. |
| In the Linux kernel, the following vulnerability has been resolved:
netfilter: nft_payload: incorrect arithmetics when fetching VLAN header bits
If the offset + length goes over the ethernet + vlan header, then the
length is adjusted to copy the bytes that are within the boundaries of
the vlan_ethhdr scratchpad area. The remaining bytes beyond ethernet +
vlan header are copied directly from the skbuff data area.
Fix incorrect arithmetic operator: subtract, not add, the size of the
vlan header in case of double-tagged packets to adjust the length
accordingly to address CVE-2023-0179. |
| In the Linux kernel, the following vulnerability has been resolved:
ipv4: prevent potential spectre v1 gadget in ip_metrics_convert()
if (!type)
continue;
if (type > RTAX_MAX)
return -EINVAL;
...
metrics[type - 1] = val;
@type being used as an array index, we need to prevent
cpu speculation or risk leaking kernel memory content. |
| In the Linux kernel, the following vulnerability has been resolved:
cifs: Fix oops due to uncleared server->smbd_conn in reconnect
In smbd_destroy(), clear the server->smbd_conn pointer after freeing the
smbd_connection struct that it points to so that reconnection doesn't get
confused. |
| In the Linux kernel, the following vulnerability has been resolved:
bnxt: Do not read past the end of test names
Test names were being concatenated based on a offset beyond the end of
the first name, which tripped the buffer overflow detection logic:
detected buffer overflow in strnlen
[...]
Call Trace:
bnxt_ethtool_init.cold+0x18/0x18
Refactor struct hwrm_selftest_qlist_output to use an actual array,
and adjust the concatenation to use snprintf() rather than a series of
strncat() calls. |
| In the Linux kernel, the following vulnerability has been resolved:
arm64: dts: imx8mm-verdin: Do not power down eth-phy
Currently if suspending using either freeze or memory state, the fec
driver tries to power down the phy which leads to crash of the kernel
and non-responsible kernel with the following call trace:
[ 24.839889 ] Call trace:
[ 24.839892 ] phy_error+0x18/0x60
[ 24.839898 ] kszphy_handle_interrupt+0x6c/0x80
[ 24.839903 ] phy_interrupt+0x20/0x2c
[ 24.839909 ] irq_thread_fn+0x30/0xa0
[ 24.839919 ] irq_thread+0x178/0x2c0
[ 24.839925 ] kthread+0x154/0x160
[ 24.839932 ] ret_from_fork+0x10/0x20
Since there is currently no functionality in the phy subsystem to power
down phys let's just disable the feature of powering-down the ethernet
phy. |
| In the Linux kernel, the following vulnerability has been resolved:
ice: Fix deinitializing VF in error path
If ice_ena_vfs() fails after calling ice_create_vf_entries(), it frees
all VFs without removing them from snapshot PF-VF mailbox list, leading
to list corruption.
Reproducer:
devlink dev eswitch set $PF1_PCI mode switchdev
ip l s $PF1 up
ip l s $PF1 promisc on
sleep 1
echo 1 > /sys/class/net/$PF1/device/sriov_numvfs
sleep 1
echo 1 > /sys/class/net/$PF1/device/sriov_numvfs
Trace (minimized):
list_add corruption. next->prev should be prev (ffff8882e241c6f0), but was 0000000000000000. (next=ffff888455da1330).
kernel BUG at lib/list_debug.c:29!
RIP: 0010:__list_add_valid_or_report+0xa6/0x100
ice_mbx_init_vf_info+0xa7/0x180 [ice]
ice_initialize_vf_entry+0x1fa/0x250 [ice]
ice_sriov_configure+0x8d7/0x1520 [ice]
? __percpu_ref_switch_mode+0x1b1/0x5d0
? __pfx_ice_sriov_configure+0x10/0x10 [ice]
Sometimes a KASAN report can be seen instead with a similar stack trace:
BUG: KASAN: use-after-free in __list_add_valid_or_report+0xf1/0x100
VFs are added to this list in ice_mbx_init_vf_info(), but only removed
in ice_free_vfs(). Move the removing to ice_free_vf_entries(), which is
also being called in other places where VFs are being removed (including
ice_free_vfs() itself). |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: lpfc: Fix call trace observed during I/O with CMF enabled
The following was seen with CMF enabled:
BUG: using smp_processor_id() in preemptible
code: systemd-udevd/31711
kernel: caller is lpfc_update_cmf_cmd+0x214/0x420 [lpfc]
kernel: CPU: 12 PID: 31711 Comm: systemd-udevd
kernel: Call Trace:
kernel: <TASK>
kernel: dump_stack_lvl+0x44/0x57
kernel: check_preemption_disabled+0xbf/0xe0
kernel: lpfc_update_cmf_cmd+0x214/0x420 [lpfc]
kernel: lpfc_nvme_fcp_io_submit+0x23b4/0x4df0 [lpfc]
this_cpu_ptr() calls smp_processor_id() in a preemptible context.
Fix by using per_cpu_ptr() with raw_smp_processor_id() instead. |
| In the Linux kernel, the following vulnerability has been resolved:
nbd: fix io hung while disconnecting device
In our tests, "qemu-nbd" triggers a io hung:
INFO: task qemu-nbd:11445 blocked for more than 368 seconds.
Not tainted 5.18.0-rc3-next-20220422-00003-g2176915513ca #884
"echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
task:qemu-nbd state:D stack: 0 pid:11445 ppid: 1 flags:0x00000000
Call Trace:
<TASK>
__schedule+0x480/0x1050
? _raw_spin_lock_irqsave+0x3e/0xb0
schedule+0x9c/0x1b0
blk_mq_freeze_queue_wait+0x9d/0xf0
? ipi_rseq+0x70/0x70
blk_mq_freeze_queue+0x2b/0x40
nbd_add_socket+0x6b/0x270 [nbd]
nbd_ioctl+0x383/0x510 [nbd]
blkdev_ioctl+0x18e/0x3e0
__x64_sys_ioctl+0xac/0x120
do_syscall_64+0x35/0x80
entry_SYSCALL_64_after_hwframe+0x44/0xae
RIP: 0033:0x7fd8ff706577
RSP: 002b:00007fd8fcdfebf8 EFLAGS: 00000246 ORIG_RAX: 0000000000000010
RAX: ffffffffffffffda RBX: 0000000040000000 RCX: 00007fd8ff706577
RDX: 000000000000000d RSI: 000000000000ab00 RDI: 000000000000000f
RBP: 000000000000000f R08: 000000000000fbe8 R09: 000055fe497c62b0
R10: 00000002aff20000 R11: 0000000000000246 R12: 000000000000006d
R13: 0000000000000000 R14: 00007ffe82dc5e70 R15: 00007fd8fcdff9c0
"qemu-ndb -d" will call ioctl 'NBD_DISCONNECT' first, however, following
message was found:
block nbd0: Send disconnect failed -32
Which indicate that something is wrong with the server. Then,
"qemu-nbd -d" will call ioctl 'NBD_CLEAR_SOCK', however ioctl can't clear
requests after commit 2516ab1543fd("nbd: only clear the queue on device
teardown"). And in the meantime, request can't complete through timeout
because nbd_xmit_timeout() will always return 'BLK_EH_RESET_TIMER', which
means such request will never be completed in this situation.
Now that the flag 'NBD_CMD_INFLIGHT' can make sure requests won't
complete multiple times, switch back to call nbd_clear_sock() in
nbd_clear_sock_ioctl(), so that inflight requests can be cleared. |
| In the Linux kernel, the following vulnerability has been resolved:
Squashfs: fix handling and sanity checking of xattr_ids count
A Sysbot [1] corrupted filesystem exposes two flaws in the handling and
sanity checking of the xattr_ids count in the filesystem. Both of these
flaws cause computation overflow due to incorrect typing.
In the corrupted filesystem the xattr_ids value is 4294967071, which
stored in a signed variable becomes the negative number -225.
Flaw 1 (64-bit systems only):
The signed integer xattr_ids variable causes sign extension.
This causes variable overflow in the SQUASHFS_XATTR_*(A) macros. The
variable is first multiplied by sizeof(struct squashfs_xattr_id) where the
type of the sizeof operator is "unsigned long".
On a 64-bit system this is 64-bits in size, and causes the negative number
to be sign extended and widened to 64-bits and then become unsigned. This
produces the very large number 18446744073709548016 or 2^64 - 3600. This
number when rounded up by SQUASHFS_METADATA_SIZE - 1 (8191 bytes) and
divided by SQUASHFS_METADATA_SIZE overflows and produces a length of 0
(stored in len).
Flaw 2 (32-bit systems only):
On a 32-bit system the integer variable is not widened by the unsigned
long type of the sizeof operator (32-bits), and the signedness of the
variable has no effect due it always being treated as unsigned.
The above corrupted xattr_ids value of 4294967071, when multiplied
overflows and produces the number 4294963696 or 2^32 - 3400. This number
when rounded up by SQUASHFS_METADATA_SIZE - 1 (8191 bytes) and divided by
SQUASHFS_METADATA_SIZE overflows again and produces a length of 0.
The effect of the 0 length computation:
In conjunction with the corrupted xattr_ids field, the filesystem also has
a corrupted xattr_table_start value, where it matches the end of
filesystem value of 850.
This causes the following sanity check code to fail because the
incorrectly computed len of 0 matches the incorrect size of the table
reported by the superblock (0 bytes).
len = SQUASHFS_XATTR_BLOCK_BYTES(*xattr_ids);
indexes = SQUASHFS_XATTR_BLOCKS(*xattr_ids);
/*
* The computed size of the index table (len bytes) should exactly
* match the table start and end points
*/
start = table_start + sizeof(*id_table);
end = msblk->bytes_used;
if (len != (end - start))
return ERR_PTR(-EINVAL);
Changing the xattr_ids variable to be "usigned int" fixes the flaw on a
64-bit system. This relies on the fact the computation is widened by the
unsigned long type of the sizeof operator.
Casting the variable to u64 in the above macro fixes this flaw on a 32-bit
system.
It also means 64-bit systems do not implicitly rely on the type of the
sizeof operator to widen the computation.
[1] https://lore.kernel.org/lkml/000000000000cd44f005f1a0f17f@google.com/ |
| In the Linux kernel, the following vulnerability has been resolved:
mm: multi-gen LRU: fix crash during cgroup migration
lru_gen_migrate_mm() assumes lru_gen_add_mm() runs prior to itself. This
isn't true for the following scenario:
CPU 1 CPU 2
clone()
cgroup_can_fork()
cgroup_procs_write()
cgroup_post_fork()
task_lock()
lru_gen_migrate_mm()
task_unlock()
task_lock()
lru_gen_add_mm()
task_unlock()
And when the above happens, kernel crashes because of linked list
corruption (mm_struct->lru_gen.list). |
| It was discovered that a nft object or expression could reference a nft set on a different nft table, leading to a use-after-free once that table was deleted. |
| A use-after-free vulnerability in the Linux kernel's netfilter: nf_tables component can be exploited to achieve local privilege escalation.
The nft_verdict_init() function allows positive values as drop error within the hook verdict, and hence the nf_hook_slow() function can cause a double free vulnerability when NF_DROP is issued with a drop error which resembles NF_ACCEPT.
We recommend upgrading past commit f342de4e2f33e0e39165d8639387aa6c19dff660. |
| In the Linux kernel, the following vulnerability has been resolved:
netfilter: use get_random_u32 instead of prandom
bh might occur while updating per-cpu rnd_state from user context,
ie. local_out path.
BUG: using smp_processor_id() in preemptible [00000000] code: nginx/2725
caller is nft_ng_random_eval+0x24/0x54 [nft_numgen]
Call Trace:
check_preemption_disabled+0xde/0xe0
nft_ng_random_eval+0x24/0x54 [nft_numgen]
Use the random driver instead, this also avoids need for local prandom
state. Moreover, prandom now uses the random driver since d4150779e60f
("random32: use real rng for non-deterministic randomness").
Based on earlier patch from Pablo Neira. |