| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
bluetooth/hci: disallow setting handle bigger than HCI_CONN_HANDLE_MAX
Syzbot hit warning in hci_conn_del() caused by freeing handle that was
not allocated using ida allocator.
This is caused by handle bigger than HCI_CONN_HANDLE_MAX passed by
hci_le_big_sync_established_evt(), which makes code think it's unset
connection.
Add same check for handle upper bound as in hci_conn_set_handle() to
prevent warning. |
| In the Linux kernel, the following vulnerability has been resolved:
bpf: Fix a potential use-after-free in bpf_link_free()
After commit 1a80dbcb2dba, bpf_link can be freed by
link->ops->dealloc_deferred, but the code still tests and uses
link->ops->dealloc afterward, which leads to a use-after-free as
reported by syzbot. Actually, one of them should be sufficient, so
just call one of them instead of both. Also add a WARN_ON() in case
of any problematic implementation. |
| In the Linux kernel, the following vulnerability has been resolved:
crypto: qat - Fix ADF_DEV_RESET_SYNC memory leak
Using completion_done to determine whether the caller has gone
away only works after a complete call. Furthermore it's still
possible that the caller has not yet called wait_for_completion,
resulting in another potential UAF.
Fix this by making the caller use cancel_work_sync and then freeing
the memory safely. |
| In the Linux kernel, the following vulnerability has been resolved:
md/raid5: fix deadlock that raid5d() wait for itself to clear MD_SB_CHANGE_PENDING
Xiao reported that lvm2 test lvconvert-raid-takeover.sh can hang with
small possibility, the root cause is exactly the same as commit
bed9e27baf52 ("Revert "md/raid5: Wait for MD_SB_CHANGE_PENDING in raid5d"")
However, Dan reported another hang after that, and junxiao investigated
the problem and found out that this is caused by plugged bio can't issue
from raid5d().
Current implementation in raid5d() has a weird dependence:
1) md_check_recovery() from raid5d() must hold 'reconfig_mutex' to clear
MD_SB_CHANGE_PENDING;
2) raid5d() handles IO in a deadloop, until all IO are issued;
3) IO from raid5d() must wait for MD_SB_CHANGE_PENDING to be cleared;
This behaviour is introduce before v2.6, and for consequence, if other
context hold 'reconfig_mutex', and md_check_recovery() can't update
super_block, then raid5d() will waste one cpu 100% by the deadloop, until
'reconfig_mutex' is released.
Refer to the implementation from raid1 and raid10, fix this problem by
skipping issue IO if MD_SB_CHANGE_PENDING is still set after
md_check_recovery(), daemon thread will be woken up when 'reconfig_mutex'
is released. Meanwhile, the hang problem will be fixed as well. |
| In the Linux kernel, the following vulnerability has been resolved:
fbdev: savage: Handle err return when savagefb_check_var failed
The commit 04e5eac8f3ab("fbdev: savage: Error out if pixclock equals zero")
checks the value of pixclock to avoid divide-by-zero error. However
the function savagefb_probe doesn't handle the error return of
savagefb_check_var. When pixclock is 0, it will cause divide-by-zero error. |
| In the Linux kernel, the following vulnerability has been resolved:
eventfs: Fix a possible null pointer dereference in eventfs_find_events()
In function eventfs_find_events,there is a potential null pointer
that may be caused by calling update_events_attr which will perform
some operations on the members of the ei struct when ei is NULL.
Hence,When ei->is_freed is set,return NULL directly. |
| In the Linux kernel, the following vulnerability has been resolved:
ext4: fix mb_cache_entry's e_refcnt leak in ext4_xattr_block_cache_find()
Syzbot reports a warning as follows:
============================================
WARNING: CPU: 0 PID: 5075 at fs/mbcache.c:419 mb_cache_destroy+0x224/0x290
Modules linked in:
CPU: 0 PID: 5075 Comm: syz-executor199 Not tainted 6.9.0-rc6-gb947cc5bf6d7
RIP: 0010:mb_cache_destroy+0x224/0x290 fs/mbcache.c:419
Call Trace:
<TASK>
ext4_put_super+0x6d4/0xcd0 fs/ext4/super.c:1375
generic_shutdown_super+0x136/0x2d0 fs/super.c:641
kill_block_super+0x44/0x90 fs/super.c:1675
ext4_kill_sb+0x68/0xa0 fs/ext4/super.c:7327
[...]
============================================
This is because when finding an entry in ext4_xattr_block_cache_find(), if
ext4_sb_bread() returns -ENOMEM, the ce's e_refcnt, which has already grown
in the __entry_find(), won't be put away, and eventually trigger the above
issue in mb_cache_destroy() due to reference count leakage.
So call mb_cache_entry_put() on the -ENOMEM error branch as a quick fix. |
| In the Linux kernel, the following vulnerability has been resolved:
bpf: Allow delete from sockmap/sockhash only if update is allowed
We have seen an influx of syzkaller reports where a BPF program attached to
a tracepoint triggers a locking rule violation by performing a map_delete
on a sockmap/sockhash.
We don't intend to support this artificial use scenario. Extend the
existing verifier allowed-program-type check for updating sockmap/sockhash
to also cover deleting from a map.
From now on only BPF programs which were previously allowed to update
sockmap/sockhash can delete from these map types. |
| In the Linux kernel, the following vulnerability has been resolved:
ax25: Fix reference count leak issues of ax25_dev
The ax25_addr_ax25dev() and ax25_dev_device_down() exist a reference
count leak issue of the object "ax25_dev".
Memory leak issue in ax25_addr_ax25dev():
The reference count of the object "ax25_dev" can be increased multiple
times in ax25_addr_ax25dev(). This will cause a memory leak.
Memory leak issues in ax25_dev_device_down():
The reference count of ax25_dev is set to 1 in ax25_dev_device_up() and
then increase the reference count when ax25_dev is added to ax25_dev_list.
As a result, the reference count of ax25_dev is 2. But when the device is
shutting down. The ax25_dev_device_down() drops the reference count once
or twice depending on if we goto unlock_put or not, which will cause
memory leak.
As for the issue of ax25_addr_ax25dev(), it is impossible for one pointer
to be on a list twice. So add a break in ax25_addr_ax25dev(). As for the
issue of ax25_dev_device_down(), increase the reference count of ax25_dev
once in ax25_dev_device_up() and decrease the reference count of ax25_dev
after it is removed from the ax25_dev_list. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: brcmfmac: pcie: handle randbuf allocation failure
The kzalloc() in brcmf_pcie_download_fw_nvram() will return null
if the physical memory has run out. As a result, if we use
get_random_bytes() to generate random bytes in the randbuf, the
null pointer dereference bug will happen.
In order to prevent allocation failure, this patch adds a separate
function using buffer on kernel stack to generate random bytes in
the randbuf, which could prevent the kernel stack from overflow. |
| In the Linux kernel, the following vulnerability has been resolved:
net/mlx5: Add a timeout to acquire the command queue semaphore
Prevent forced completion handling on an entry that has not yet been
assigned an index, causing an out of bounds access on idx = -22.
Instead of waiting indefinitely for the sem, blocking flow now waits for
index to be allocated or a sem acquisition timeout before beginning the
timer for FW completion.
Kernel log example:
mlx5_core 0000:06:00.0: wait_func_handle_exec_timeout:1128:(pid 185911): cmd[-22]: CREATE_UCTX(0xa04) No done completion |
| In the Linux kernel, the following vulnerability has been resolved:
net/mlx5: Discard command completions in internal error
Fix use after free when FW completion arrives while device is in
internal error state. Avoid calling completion handler in this case,
since the device will flush the command interface and trigger all
completions manually.
Kernel log:
------------[ cut here ]------------
refcount_t: underflow; use-after-free.
...
RIP: 0010:refcount_warn_saturate+0xd8/0xe0
...
Call Trace:
<IRQ>
? __warn+0x79/0x120
? refcount_warn_saturate+0xd8/0xe0
? report_bug+0x17c/0x190
? handle_bug+0x3c/0x60
? exc_invalid_op+0x14/0x70
? asm_exc_invalid_op+0x16/0x20
? refcount_warn_saturate+0xd8/0xe0
cmd_ent_put+0x13b/0x160 [mlx5_core]
mlx5_cmd_comp_handler+0x5f9/0x670 [mlx5_core]
cmd_comp_notifier+0x1f/0x30 [mlx5_core]
notifier_call_chain+0x35/0xb0
atomic_notifier_call_chain+0x16/0x20
mlx5_eq_async_int+0xf6/0x290 [mlx5_core]
notifier_call_chain+0x35/0xb0
atomic_notifier_call_chain+0x16/0x20
irq_int_handler+0x19/0x30 [mlx5_core]
__handle_irq_event_percpu+0x4b/0x160
handle_irq_event+0x2e/0x80
handle_edge_irq+0x98/0x230
__common_interrupt+0x3b/0xa0
common_interrupt+0x7b/0xa0
</IRQ>
<TASK>
asm_common_interrupt+0x22/0x40 |
| In the Linux kernel, the following vulnerability has been resolved:
ax25: Fix reference count leak issue of net_device
There is a reference count leak issue of the object "net_device" in
ax25_dev_device_down(). When the ax25 device is shutting down, the
ax25_dev_device_down() drops the reference count of net_device one
or zero times depending on if we goto unlock_put or not, which will
cause memory leak.
In order to solve the above issue, decrease the reference count of
net_device after dev->ax25_ptr is set to null. |
| In the Linux kernel, the following vulnerability has been resolved:
ASoC: kirkwood: Fix potential NULL dereference
In kirkwood_dma_hw_params() mv_mbus_dram_info() returns NULL if
CONFIG_PLAT_ORION macro is not defined.
Fix this bug by adding NULL check.
Found by Linux Verification Center (linuxtesting.org) with SVACE. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/msm/a6xx: Avoid a nullptr dereference when speedbin setting fails
Calling a6xx_destroy() before adreno_gpu_init() leads to a null pointer
dereference on:
msm_gpu_cleanup() : platform_set_drvdata(gpu->pdev, NULL);
as gpu->pdev is only assigned in:
a6xx_gpu_init()
|_ adreno_gpu_init
|_ msm_gpu_init()
Instead of relying on handwavy null checks down the cleanup chain,
explicitly de-allocate the LLC data and free a6xx_gpu instead.
Patchwork: https://patchwork.freedesktop.org/patch/588919/ |
| In the Linux kernel, the following vulnerability has been resolved:
af_unix: Update unix_sk(sk)->oob_skb under sk_receive_queue lock.
Billy Jheng Bing-Jhong reported a race between __unix_gc() and
queue_oob().
__unix_gc() tries to garbage-collect close()d inflight sockets,
and then if the socket has MSG_OOB in unix_sk(sk)->oob_skb, GC
will drop the reference and set NULL to it locklessly.
However, the peer socket still can send MSG_OOB message and
queue_oob() can update unix_sk(sk)->oob_skb concurrently, leading
NULL pointer dereference. [0]
To fix the issue, let's update unix_sk(sk)->oob_skb under the
sk_receive_queue's lock and take it everywhere we touch oob_skb.
Note that we defer kfree_skb() in manage_oob() to silence lockdep
false-positive (See [1]).
[0]:
BUG: kernel NULL pointer dereference, address: 0000000000000008
PF: supervisor write access in kernel mode
PF: error_code(0x0002) - not-present page
PGD 8000000009f5e067 P4D 8000000009f5e067 PUD 9f5d067 PMD 0
Oops: 0002 [#1] PREEMPT SMP PTI
CPU: 3 PID: 50 Comm: kworker/3:1 Not tainted 6.9.0-rc5-00191-gd091e579b864 #110
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.0-0-gd239552ce722-prebuilt.qemu.org 04/01/2014
Workqueue: events delayed_fput
RIP: 0010:skb_dequeue (./include/linux/skbuff.h:2386 ./include/linux/skbuff.h:2402 net/core/skbuff.c:3847)
Code: 39 e3 74 3e 8b 43 10 48 89 ef 83 e8 01 89 43 10 49 8b 44 24 08 49 c7 44 24 08 00 00 00 00 49 8b 14 24 49 c7 04 24 00 00 00 00 <48> 89 42 08 48 89 10 e8 e7 c5 42 00 4c 89 e0 5b 5d 41 5c c3 cc cc
RSP: 0018:ffffc900001bfd48 EFLAGS: 00000002
RAX: 0000000000000000 RBX: ffff8880088f5ae8 RCX: 00000000361289f9
RDX: 0000000000000000 RSI: 0000000000000206 RDI: ffff8880088f5b00
RBP: ffff8880088f5b00 R08: 0000000000080000 R09: 0000000000000001
R10: 0000000000000003 R11: 0000000000000001 R12: ffff8880056b6a00
R13: ffff8880088f5280 R14: 0000000000000001 R15: ffff8880088f5a80
FS: 0000000000000000(0000) GS:ffff88807dd80000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000000008 CR3: 0000000006314000 CR4: 00000000007506f0
PKRU: 55555554
Call Trace:
<TASK>
unix_release_sock (net/unix/af_unix.c:654)
unix_release (net/unix/af_unix.c:1050)
__sock_release (net/socket.c:660)
sock_close (net/socket.c:1423)
__fput (fs/file_table.c:423)
delayed_fput (fs/file_table.c:444 (discriminator 3))
process_one_work (kernel/workqueue.c:3259)
worker_thread (kernel/workqueue.c:3329 kernel/workqueue.c:3416)
kthread (kernel/kthread.c:388)
ret_from_fork (arch/x86/kernel/process.c:153)
ret_from_fork_asm (arch/x86/entry/entry_64.S:257)
</TASK>
Modules linked in:
CR2: 0000000000000008 |
| In the Linux kernel, the following vulnerability has been resolved:
pinctrl: devicetree: fix refcount leak in pinctrl_dt_to_map()
If we fail to allocate propname buffer, we need to drop the reference
count we just took. Because the pinctrl_dt_free_maps() includes the
droping operation, here we call it directly. |
| In the Linux kernel, the following vulnerability has been resolved:
tipc: fix a possible memleak in tipc_buf_append
__skb_linearize() doesn't free the skb when it fails, so move
'*buf = NULL' after __skb_linearize(), so that the skb can be
freed on the err path. |
| In the Linux kernel, the following vulnerability has been resolved:
s390/qeth: Fix kernel panic after setting hsuid
Symptom:
When the hsuid attribute is set for the first time on an IQD Layer3
device while the corresponding network interface is already UP,
the kernel will try to execute a napi function pointer that is NULL.
Example:
---------------------------------------------------------------------------
[ 2057.572696] illegal operation: 0001 ilc:1 [#1] SMP
[ 2057.572702] Modules linked in: af_iucv qeth_l3 zfcp scsi_transport_fc sunrpc nft_fib_inet nft_fib_ipv4 nft_fib_ipv6 nft_fib nft_reject_inet nf_reject_ipv4 nf_reject_ipv6
nft_reject nft_ct nf_tables_set nft_chain_nat nf_nat nf_conntrack nf_defrag_ipv6 nf_defrag_ipv4 ip_set nf_tables libcrc32c nfnetlink ghash_s390 prng xts aes_s390 des_s390 de
s_generic sha3_512_s390 sha3_256_s390 sha512_s390 vfio_ccw vfio_mdev mdev vfio_iommu_type1 eadm_sch vfio ext4 mbcache jbd2 qeth_l2 bridge stp llc dasd_eckd_mod qeth dasd_mod
qdio ccwgroup pkey zcrypt
[ 2057.572739] CPU: 6 PID: 60182 Comm: stress_client Kdump: loaded Not tainted 4.18.0-541.el8.s390x #1
[ 2057.572742] Hardware name: IBM 3931 A01 704 (LPAR)
[ 2057.572744] Krnl PSW : 0704f00180000000 0000000000000002 (0x2)
[ 2057.572748] R:0 T:1 IO:1 EX:1 Key:0 M:1 W:0 P:0 AS:3 CC:3 PM:0 RI:0 EA:3
[ 2057.572751] Krnl GPRS: 0000000000000004 0000000000000000 00000000a3b008d8 0000000000000000
[ 2057.572754] 00000000a3b008d8 cb923a29c779abc5 0000000000000000 00000000814cfd80
[ 2057.572756] 000000000000012c 0000000000000000 00000000a3b008d8 00000000a3b008d8
[ 2057.572758] 00000000bab6d500 00000000814cfd80 0000000091317e46 00000000814cfc68
[ 2057.572762] Krnl Code:#0000000000000000: 0000 illegal
>0000000000000002: 0000 illegal
0000000000000004: 0000 illegal
0000000000000006: 0000 illegal
0000000000000008: 0000 illegal
000000000000000a: 0000 illegal
000000000000000c: 0000 illegal
000000000000000e: 0000 illegal
[ 2057.572800] Call Trace:
[ 2057.572801] ([<00000000ec639700>] 0xec639700)
[ 2057.572803] [<00000000913183e2>] net_rx_action+0x2ba/0x398
[ 2057.572809] [<0000000091515f76>] __do_softirq+0x11e/0x3a0
[ 2057.572813] [<0000000090ce160c>] do_softirq_own_stack+0x3c/0x58
[ 2057.572817] ([<0000000090d2cbd6>] do_softirq.part.1+0x56/0x60)
[ 2057.572822] [<0000000090d2cc60>] __local_bh_enable_ip+0x80/0x98
[ 2057.572825] [<0000000091314706>] __dev_queue_xmit+0x2be/0xd70
[ 2057.572827] [<000003ff803dd6d6>] afiucv_hs_send+0x24e/0x300 [af_iucv]
[ 2057.572830] [<000003ff803dd88a>] iucv_send_ctrl+0x102/0x138 [af_iucv]
[ 2057.572833] [<000003ff803de72a>] iucv_sock_connect+0x37a/0x468 [af_iucv]
[ 2057.572835] [<00000000912e7e90>] __sys_connect+0xa0/0xd8
[ 2057.572839] [<00000000912e9580>] sys_socketcall+0x228/0x348
[ 2057.572841] [<0000000091514e1a>] system_call+0x2a6/0x2c8
[ 2057.572843] Last Breaking-Event-Address:
[ 2057.572844] [<0000000091317e44>] __napi_poll+0x4c/0x1d8
[ 2057.572846]
[ 2057.572847] Kernel panic - not syncing: Fatal exception in interrupt
-------------------------------------------------------------------------------------------
Analysis:
There is one napi structure per out_q: card->qdio.out_qs[i].napi
The napi.poll functions are set during qeth_open().
Since
commit 1cfef80d4c2b ("s390/qeth: Don't call dev_close/dev_open (DOWN/UP)")
qeth_set_offline()/qeth_set_online() no longer call dev_close()/
dev_open(). So if qeth_free_qdio_queues() cleared
card->qdio.out_qs[i].napi.poll while the network interface was UP and the
card was offline, they are not set again.
Reproduction:
chzdev -e $devno layer2=0
ip link set dev $network_interface up
echo 0 > /sys/bus/ccw
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
usb: typec: tcpm: Check for port partner validity before consuming it
typec_register_partner() does not guarantee partner registration
to always succeed. In the event of failure, port->partner is set
to the error value or NULL. Given that port->partner validity is
not checked, this results in the following crash:
Unable to handle kernel NULL pointer dereference at virtual address xx
pc : run_state_machine+0x1bc8/0x1c08
lr : run_state_machine+0x1b90/0x1c08
..
Call trace:
run_state_machine+0x1bc8/0x1c08
tcpm_state_machine_work+0x94/0xe4
kthread_worker_fn+0x118/0x328
kthread+0x1d0/0x23c
ret_from_fork+0x10/0x20
To prevent the crash, check for port->partner validity before
derefencing it in all the call sites. |