| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
bonding: fix oops during rmmod
"rmmod bonding" causes an oops ever since commit cc317ea3d927 ("bonding:
remove redundant NULL check in debugfs function"). Here are the relevant
functions being called:
bonding_exit()
bond_destroy_debugfs()
debugfs_remove_recursive(bonding_debug_root);
bonding_debug_root = NULL; <--------- SET TO NULL HERE
bond_netlink_fini()
rtnl_link_unregister()
__rtnl_link_unregister()
unregister_netdevice_many_notify()
bond_uninit()
bond_debug_unregister()
(commit removed check for bonding_debug_root == NULL)
debugfs_remove()
simple_recursive_removal()
down_write() -> OOPS
However, reverting the bad commit does not solve the problem completely
because the original code contains a race that could cause the same
oops, although it was much less likely to be triggered unintentionally:
CPU1
rmmod bonding
bonding_exit()
bond_destroy_debugfs()
debugfs_remove_recursive(bonding_debug_root);
CPU2
echo -bond0 > /sys/class/net/bonding_masters
bond_uninit()
bond_debug_unregister()
if (!bonding_debug_root)
CPU1
bonding_debug_root = NULL;
So do NOT revert the bad commit (since the removed checks were racy
anyway), and instead change the order of actions taken during module
removal. The same oops can also happen if there is an error during
module init, so apply the same fix there. |
| In the Linux kernel, the following vulnerability has been resolved:
Revert "xsk: Support redirect to any socket bound to the same umem"
This reverts commit 2863d665ea41282379f108e4da6c8a2366ba66db.
This patch introduced a potential kernel crash when multiple napi instances
redirect to the same AF_XDP socket. By removing the queue_index check, it is
possible for multiple napi instances to access the Rx ring at the same time,
which will result in a corrupted ring state which can lead to a crash when
flushing the rings in __xsk_flush(). This can happen when the linked list of
sockets to flush gets corrupted by concurrent accesses. A quick and small fix
is not possible, so let us revert this for now. |
| In the Linux kernel, the following vulnerability has been resolved:
btrfs: protect folio::private when attaching extent buffer folios
[BUG]
Since v6.8 there are rare kernel crashes reported by various people,
the common factor is bad page status error messages like this:
BUG: Bad page state in process kswapd0 pfn:d6e840
page: refcount:0 mapcount:0 mapping:000000007512f4f2 index:0x2796c2c7c
pfn:0xd6e840
aops:btree_aops ino:1
flags: 0x17ffffe0000008(uptodate|node=0|zone=2|lastcpupid=0x3fffff)
page_type: 0xffffffff()
raw: 0017ffffe0000008 dead000000000100 dead000000000122 ffff88826d0be4c0
raw: 00000002796c2c7c 0000000000000000 00000000ffffffff 0000000000000000
page dumped because: non-NULL mapping
[CAUSE]
Commit 09e6cef19c9f ("btrfs: refactor alloc_extent_buffer() to
allocate-then-attach method") changes the sequence when allocating a new
extent buffer.
Previously we always called grab_extent_buffer() under
mapping->i_private_lock, to ensure the safety on modification on
folio::private (which is a pointer to extent buffer for regular
sectorsize).
This can lead to the following race:
Thread A is trying to allocate an extent buffer at bytenr X, with 4
4K pages, meanwhile thread B is trying to release the page at X + 4K
(the second page of the extent buffer at X).
Thread A | Thread B
-----------------------------------+-------------------------------------
| btree_release_folio()
| | This is for the page at X + 4K,
| | Not page X.
| |
alloc_extent_buffer() | |- release_extent_buffer()
|- filemap_add_folio() for the | | |- atomic_dec_and_test(eb->refs)
| page at bytenr X (the first | | |
| page). | | |
| Which returned -EEXIST. | | |
| | | |
|- filemap_lock_folio() | | |
| Returned the first page locked. | | |
| | | |
|- grab_extent_buffer() | | |
| |- atomic_inc_not_zero() | | |
| | Returned false | | |
| |- folio_detach_private() | | |- folio_detach_private() for X
| |- folio_test_private() | | |- folio_test_private()
| Returned true | | | Returned true
|- folio_put() | |- folio_put()
Now there are two puts on the same folio at folio X, leading to refcount
underflow of the folio X, and eventually causing the BUG_ON() on the
page->mapping.
The condition is not that easy to hit:
- The release must be triggered for the middle page of an eb
If the release is on the same first page of an eb, page lock would kick
in and prevent the race.
- folio_detach_private() has a very small race window
It's only between folio_test_private() and folio_clear_private().
That's exactly when mapping->i_private_lock is used to prevent such race,
and commit 09e6cef19c9f ("btrfs: refactor alloc_extent_buffer() to
allocate-then-attach method") screwed that up.
At that time, I thought the page lock would kick in as
filemap_release_folio() also requires the page to be locked, but forgot
the filemap_release_folio() only locks one page, not all pages of an
extent buffer.
[FIX]
Move all the code requiring i_private_lock into
attach_eb_folio_to_filemap(), so that everything is done with proper
lock protection.
Furthermore to prevent future problems, add an extra
lockdep_assert_locked() to ensure we're holding the proper lock.
To reproducer that is able to hit the race (takes a few minutes with
instrumented code inserting delays to alloc_extent_buffer()):
#!/bin/sh
drop_caches () {
while(true); do
echo 3 > /proc/sys/vm/drop_caches
echo 1 > /proc/sys/vm/compact_memory
done
}
run_tar () {
while(true); do
for x in `seq 1 80` ; do
tar cf /dev/zero /mnt > /dev/null &
done
wait
done
}
mkfs.btrfs -f -d single -m single
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
block: fix request.queuelist usage in flush
Friedrich Weber reported a kernel crash problem and bisected to commit
81ada09cc25e ("blk-flush: reuse rq queuelist in flush state machine").
The root cause is that we use "list_move_tail(&rq->queuelist, pending)"
in the PREFLUSH/POSTFLUSH sequences. But rq->queuelist.next == xxx since
it's popped out from plug->cached_rq in __blk_mq_alloc_requests_batch().
We don't initialize its queuelist just for this first request, although
the queuelist of all later popped requests will be initialized.
Fix it by changing to use "list_add_tail(&rq->queuelist, pending)" so
rq->queuelist doesn't need to be initialized. It should be ok since rq
can't be on any list when PREFLUSH or POSTFLUSH, has no move actually.
Please note the commit 81ada09cc25e ("blk-flush: reuse rq queuelist in
flush state machine") also has another requirement that no drivers would
touch rq->queuelist after blk_mq_end_request() since we will reuse it to
add rq to the post-flush pending list in POSTFLUSH. If this is not true,
we will have to revert that commit IMHO.
This updated version adds "list_del_init(&rq->queuelist)" in flush rq
callback since the dm layer may submit request of a weird invalid format
(REQ_FSEQ_PREFLUSH | REQ_FSEQ_POSTFLUSH), which causes double list_add
if without this "list_del_init(&rq->queuelist)". The weird invalid format
problem should be fixed in dm layer. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: ath12k: fix kernel crash during resume
Currently during resume, QMI target memory is not properly handled, resulting
in kernel crash in case DMA remap is not supported:
BUG: Bad page state in process kworker/u16:54 pfn:36e80
page: refcount:1 mapcount:0 mapping:0000000000000000 index:0x0 pfn:0x36e80
page dumped because: nonzero _refcount
Call Trace:
bad_page
free_page_is_bad_report
__free_pages_ok
__free_pages
dma_direct_free
dma_free_attrs
ath12k_qmi_free_target_mem_chunk
ath12k_qmi_msg_mem_request_cb
The reason is:
Once ath12k module is loaded, firmware sends memory request to host. In case
DMA remap not supported, ath12k refuses the first request due to failure in
allocating with large segment size:
ath12k_pci 0000:04:00.0: qmi firmware request memory request
ath12k_pci 0000:04:00.0: qmi mem seg type 1 size 7077888
ath12k_pci 0000:04:00.0: qmi mem seg type 4 size 8454144
ath12k_pci 0000:04:00.0: qmi dma allocation failed (7077888 B type 1), will try later with small size
ath12k_pci 0000:04:00.0: qmi delays mem_request 2
ath12k_pci 0000:04:00.0: qmi firmware request memory request
Later firmware comes back with more but small segments and allocation
succeeds:
ath12k_pci 0000:04:00.0: qmi mem seg type 1 size 524288
ath12k_pci 0000:04:00.0: qmi mem seg type 1 size 524288
ath12k_pci 0000:04:00.0: qmi mem seg type 1 size 524288
ath12k_pci 0000:04:00.0: qmi mem seg type 1 size 524288
ath12k_pci 0000:04:00.0: qmi mem seg type 1 size 524288
ath12k_pci 0000:04:00.0: qmi mem seg type 1 size 524288
ath12k_pci 0000:04:00.0: qmi mem seg type 1 size 524288
ath12k_pci 0000:04:00.0: qmi mem seg type 1 size 262144
ath12k_pci 0000:04:00.0: qmi mem seg type 1 size 524288
ath12k_pci 0000:04:00.0: qmi mem seg type 1 size 524288
ath12k_pci 0000:04:00.0: qmi mem seg type 1 size 524288
ath12k_pci 0000:04:00.0: qmi mem seg type 1 size 524288
ath12k_pci 0000:04:00.0: qmi mem seg type 1 size 524288
ath12k_pci 0000:04:00.0: qmi mem seg type 4 size 524288
ath12k_pci 0000:04:00.0: qmi mem seg type 4 size 524288
ath12k_pci 0000:04:00.0: qmi mem seg type 4 size 524288
ath12k_pci 0000:04:00.0: qmi mem seg type 4 size 524288
ath12k_pci 0000:04:00.0: qmi mem seg type 4 size 524288
ath12k_pci 0000:04:00.0: qmi mem seg type 4 size 524288
ath12k_pci 0000:04:00.0: qmi mem seg type 4 size 524288
ath12k_pci 0000:04:00.0: qmi mem seg type 4 size 524288
ath12k_pci 0000:04:00.0: qmi mem seg type 4 size 524288
ath12k_pci 0000:04:00.0: qmi mem seg type 4 size 524288
ath12k_pci 0000:04:00.0: qmi mem seg type 4 size 524288
ath12k_pci 0000:04:00.0: qmi mem seg type 4 size 524288
ath12k_pci 0000:04:00.0: qmi mem seg type 4 size 524288
ath12k_pci 0000:04:00.0: qmi mem seg type 4 size 524288
ath12k_pci 0000:04:00.0: qmi mem seg type 4 size 524288
ath12k_pci 0000:04:00.0: qmi mem seg type 4 size 524288
ath12k_pci 0000:04:00.0: qmi mem seg type 4 size 65536
ath12k_pci 0000:04:00.0: qmi mem seg type 1 size 524288
Now ath12k is working. If suspend is triggered, firmware will be reloaded
during resume. As same as before, firmware requests two large segments at
first. In ath12k_qmi_msg_mem_request_cb() segment count and size are
assigned:
ab->qmi.mem_seg_count == 2
ab->qmi.target_mem[0].size == 7077888
ab->qmi.target_mem[1].size == 8454144
Then allocation failed like before and ath12k_qmi_free_target_mem_chunk()
is called to free all allocated segments. Note the first segment is skipped
because its v.addr is cleared due to allocation failure:
chunk->v.addr = dma_alloc_coherent()
Also note that this leaks that segment because it has not been freed.
While freeing the second segment, a size of 8454144 is passed to
dma_free_coherent(). However remember that this segment is allocated at
the first time firmware is loaded, before suspend. So its real size is
524288, much smaller than 8454144. As a result kernel found we are freeing
some memory which is in use and thus cras
---truncated--- |
| This CVE ID has been rejected or withdrawn by its CVE Numbering Authority. |
| This CVE ID has been rejected or withdrawn by its CVE Numbering Authority. |
| This CVE ID has been rejected or withdrawn by its CVE Numbering Authority. |
| In the Linux kernel, the following vulnerability has been resolved:
tracing/trigger: Fix to return error if failed to alloc snapshot
Fix register_snapshot_trigger() to return error code if it failed to
allocate a snapshot instead of 0 (success). Unless that, it will register
snapshot trigger without an error. |
| In the Linux kernel, the following vulnerability has been resolved:
usb: ulpi: Fix debugfs directory leak
The ULPI per-device debugfs root is named after the ulpi device's
parent, but ulpi_unregister_interface tries to remove a debugfs
directory named after the ulpi device itself. This results in the
directory sticking around and preventing subsequent (deferred) probes
from succeeding. Change the directory name to match the ulpi device. |
| In the Linux kernel, the following vulnerability has been resolved:
Revert "drm/amd: flush any delayed gfxoff on suspend entry"
commit ab4750332dbe ("drm/amdgpu/sdma5.2: add begin/end_use ring
callbacks") caused GFXOFF control to be used more heavily and the
codepath that was removed from commit 0dee72639533 ("drm/amd: flush any
delayed gfxoff on suspend entry") now can be exercised at suspend again.
Users report that by using GNOME to suspend the lockscreen trigger will
cause SDMA traffic and the system can deadlock.
This reverts commit 0dee726395333fea833eaaf838bc80962df886c8. |
| In the Linux kernel, the following vulnerability has been resolved:
PCI: Fix active state requirement in PME polling
The commit noted in fixes added a bogus requirement that runtime PM managed
devices need to be in the RPM_ACTIVE state for PME polling. In fact, only
devices in low power states should be polled.
However there's still a requirement that the device config space must be
accessible, which has implications for both the current state of the polled
device and the parent bridge, when present. It's not sufficient to assume
the bridge remains in D0 and cases have been observed where the bridge
passes the D0 test, but the PM state indicates RPM_SUSPENDING and config
space of the polled device becomes inaccessible during pci_pme_wakeup().
Therefore, since the bridge is already effectively required to be in the
RPM_ACTIVE state, formalize this in the code and elevate the PM usage count
to maintain the state while polling the subordinate device.
This resolves a regression reported in the bugzilla below where a
Thunderbolt/USB4 hierarchy fails to scan for an attached NVMe endpoint
downstream of a bridge in a D3hot power state. |
| In the Linux kernel, the following vulnerability has been resolved:
net: fix possible store tearing in neigh_periodic_work()
While looking at a related syzbot report involving neigh_periodic_work(),
I found that I forgot to add an annotation when deleting an
RCU protected item from a list.
Readers use rcu_deference(*np), we need to use either
rcu_assign_pointer() or WRITE_ONCE() on writer side
to prevent store tearing.
I use rcu_assign_pointer() to have lockdep support,
this was the choice made in neigh_flush_dev(). |
| In the Linux kernel, the following vulnerability has been resolved:
i2c: i801: Don't generate an interrupt on bus reset
Now that the i2c-i801 driver supports interrupts, setting the KILL bit
in a attempt to recover from a timed out transaction triggers an
interrupt. Unfortunately, the interrupt handler (i801_isr) is not
prepared for this situation and will try to process the interrupt as
if it was signaling the end of a successful transaction. In the case
of a block transaction, this can result in an out-of-range memory
access.
This condition was reproduced several times by syzbot:
https://syzkaller.appspot.com/bug?extid=ed71512d469895b5b34e
https://syzkaller.appspot.com/bug?extid=8c8dedc0ba9e03f6c79e
https://syzkaller.appspot.com/bug?extid=c8ff0b6d6c73d81b610e
https://syzkaller.appspot.com/bug?extid=33f6c360821c399d69eb
https://syzkaller.appspot.com/bug?extid=be15dc0b1933f04b043a
https://syzkaller.appspot.com/bug?extid=b4d3fd1dfd53e90afd79
So disable interrupts while trying to reset the bus. Interrupts will
be enabled again for the following transaction. |
| In the Linux kernel, the following vulnerability has been resolved:
powerpc/rtas: use correct function name for resetting TCE tables
The PAPR spec spells the function name as
"ibm,reset-pe-dma-windows"
but in practice firmware uses the singular form:
"ibm,reset-pe-dma-window"
in the device tree. Since we have the wrong spelling in the RTAS
function table, reverse lookups (token -> name) fail and warn:
unexpected failed lookup for token 86
WARNING: CPU: 1 PID: 545 at arch/powerpc/kernel/rtas.c:659 __do_enter_rtas_trace+0x2a4/0x2b4
CPU: 1 PID: 545 Comm: systemd-udevd Not tainted 6.8.0-rc4 #30
Hardware name: IBM,9105-22A POWER10 (raw) 0x800200 0xf000006 of:IBM,FW1060.00 (NL1060_028) hv:phyp pSeries
NIP [c0000000000417f0] __do_enter_rtas_trace+0x2a4/0x2b4
LR [c0000000000417ec] __do_enter_rtas_trace+0x2a0/0x2b4
Call Trace:
__do_enter_rtas_trace+0x2a0/0x2b4 (unreliable)
rtas_call+0x1f8/0x3e0
enable_ddw.constprop.0+0x4d0/0xc84
dma_iommu_dma_supported+0xe8/0x24c
dma_set_mask+0x5c/0xd8
mlx5_pci_init.constprop.0+0xf0/0x46c [mlx5_core]
probe_one+0xfc/0x32c [mlx5_core]
local_pci_probe+0x68/0x12c
pci_call_probe+0x68/0x1ec
pci_device_probe+0xbc/0x1a8
really_probe+0x104/0x570
__driver_probe_device+0xb8/0x224
driver_probe_device+0x54/0x130
__driver_attach+0x158/0x2b0
bus_for_each_dev+0xa8/0x120
driver_attach+0x34/0x48
bus_add_driver+0x174/0x304
driver_register+0x8c/0x1c4
__pci_register_driver+0x68/0x7c
mlx5_init+0xb8/0x118 [mlx5_core]
do_one_initcall+0x60/0x388
do_init_module+0x7c/0x2a4
init_module_from_file+0xb4/0x108
idempotent_init_module+0x184/0x34c
sys_finit_module+0x90/0x114
And oopses are possible when lockdep is enabled or the RTAS
tracepoints are active, since those paths dereference the result of
the lookup.
Use the correct spelling to match firmware's behavior, adjusting the
related constants to match. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amdgpu: Fix a null pointer access when the smc_rreg pointer is NULL
In certain types of chips, such as VEGA20, reading the amdgpu_regs_smc file could result in an abnormal null pointer access when the smc_rreg pointer is NULL. Below are the steps to reproduce this issue and the corresponding exception log:
1. Navigate to the directory: /sys/kernel/debug/dri/0
2. Execute command: cat amdgpu_regs_smc
3. Exception Log::
[4005007.702554] BUG: kernel NULL pointer dereference, address: 0000000000000000
[4005007.702562] #PF: supervisor instruction fetch in kernel mode
[4005007.702567] #PF: error_code(0x0010) - not-present page
[4005007.702570] PGD 0 P4D 0
[4005007.702576] Oops: 0010 [#1] SMP NOPTI
[4005007.702581] CPU: 4 PID: 62563 Comm: cat Tainted: G OE 5.15.0-43-generic #46-Ubunt u
[4005007.702590] RIP: 0010:0x0
[4005007.702598] Code: Unable to access opcode bytes at RIP 0xffffffffffffffd6.
[4005007.702600] RSP: 0018:ffffa82b46d27da0 EFLAGS: 00010206
[4005007.702605] RAX: 0000000000000000 RBX: 0000000000000000 RCX: ffffa82b46d27e68
[4005007.702609] RDX: 0000000000000001 RSI: 0000000000000000 RDI: ffff9940656e0000
[4005007.702612] RBP: ffffa82b46d27dd8 R08: 0000000000000000 R09: ffff994060c07980
[4005007.702615] R10: 0000000000020000 R11: 0000000000000000 R12: 00007f5e06753000
[4005007.702618] R13: ffff9940656e0000 R14: ffffa82b46d27e68 R15: 00007f5e06753000
[4005007.702622] FS: 00007f5e0755b740(0000) GS:ffff99479d300000(0000) knlGS:0000000000000000
[4005007.702626] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[4005007.702629] CR2: ffffffffffffffd6 CR3: 00000003253fc000 CR4: 00000000003506e0
[4005007.702633] Call Trace:
[4005007.702636] <TASK>
[4005007.702640] amdgpu_debugfs_regs_smc_read+0xb0/0x120 [amdgpu]
[4005007.703002] full_proxy_read+0x5c/0x80
[4005007.703011] vfs_read+0x9f/0x1a0
[4005007.703019] ksys_read+0x67/0xe0
[4005007.703023] __x64_sys_read+0x19/0x20
[4005007.703028] do_syscall_64+0x5c/0xc0
[4005007.703034] ? do_user_addr_fault+0x1e3/0x670
[4005007.703040] ? exit_to_user_mode_prepare+0x37/0xb0
[4005007.703047] ? irqentry_exit_to_user_mode+0x9/0x20
[4005007.703052] ? irqentry_exit+0x19/0x30
[4005007.703057] ? exc_page_fault+0x89/0x160
[4005007.703062] ? asm_exc_page_fault+0x8/0x30
[4005007.703068] entry_SYSCALL_64_after_hwframe+0x44/0xae
[4005007.703075] RIP: 0033:0x7f5e07672992
[4005007.703079] Code: c0 e9 b2 fe ff ff 50 48 8d 3d fa b2 0c 00 e8 c5 1d 02 00 0f 1f 44 00 00 f3 0f 1e fa 64 8b 04 25 18 00 00 00 85 c0 75 10 0f 05 <48> 3d 00 f0 ff ff 77 56 c3 0f 1f 44 00 00 48 83 e c 28 48 89 54 24
[4005007.703083] RSP: 002b:00007ffe03097898 EFLAGS: 00000246 ORIG_RAX: 0000000000000000
[4005007.703088] RAX: ffffffffffffffda RBX: 0000000000020000 RCX: 00007f5e07672992
[4005007.703091] RDX: 0000000000020000 RSI: 00007f5e06753000 RDI: 0000000000000003
[4005007.703094] RBP: 00007f5e06753000 R08: 00007f5e06752010 R09: 00007f5e06752010
[4005007.703096] R10: 0000000000000022 R11: 0000000000000246 R12: 0000000000022000
[4005007.703099] R13: 0000000000000003 R14: 0000000000020000 R15: 0000000000020000
[4005007.703105] </TASK>
[4005007.703107] Modules linked in: nf_tables libcrc32c nfnetlink algif_hash af_alg binfmt_misc nls_ iso8859_1 ipmi_ssif ast intel_rapl_msr intel_rapl_common drm_vram_helper drm_ttm_helper amd64_edac t tm edac_mce_amd kvm_amd ccp mac_hid k10temp kvm acpi_ipmi ipmi_si rapl sch_fq_codel ipmi_devintf ipm i_msghandler msr parport_pc ppdev lp parport mtd pstore_blk efi_pstore ramoops pstore_zone reed_solo mon ip_tables x_tables autofs4 ib_uverbs ib_core amdgpu(OE) amddrm_ttm_helper(OE) amdttm(OE) iommu_v 2 amd_sched(OE) amdkcl(OE) drm_kms_helper syscopyarea sysfillrect sysimgblt fb_sys_fops cec rc_core drm igb ahci xhci_pci libahci i2c_piix4 i2c_algo_bit xhci_pci_renesas dca
[4005007.703184] CR2: 0000000000000000
[4005007.703188] ---[ en
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amdgpu: Fix potential null pointer derefernce
The amdgpu_ras_get_context may return NULL if device
not support ras feature, so add check before using. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amdgpu: fix double free err_addr pointer warnings
In amdgpu_umc_bad_page_polling_timeout, the amdgpu_umc_handle_bad_pages
will be run many times so that double free err_addr in some special case.
So set the err_addr to NULL to avoid the warnings. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amdgpu: Reset IH OVERFLOW_CLEAR bit
Allows us to detect subsequent IH ring buffer overflows as well. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amdgpu: Fix variable 'mca_funcs' dereferenced before NULL check in 'amdgpu_mca_smu_get_mca_entry()'
Fixes the below:
drivers/gpu/drm/amd/amdgpu/amdgpu_mca.c:377 amdgpu_mca_smu_get_mca_entry() warn: variable dereferenced before check 'mca_funcs' (see line 368)
357 int amdgpu_mca_smu_get_mca_entry(struct amdgpu_device *adev,
enum amdgpu_mca_error_type type,
358 int idx, struct mca_bank_entry *entry)
359 {
360 const struct amdgpu_mca_smu_funcs *mca_funcs =
adev->mca.mca_funcs;
361 int count;
362
363 switch (type) {
364 case AMDGPU_MCA_ERROR_TYPE_UE:
365 count = mca_funcs->max_ue_count;
mca_funcs is dereferenced here.
366 break;
367 case AMDGPU_MCA_ERROR_TYPE_CE:
368 count = mca_funcs->max_ce_count;
mca_funcs is dereferenced here.
369 break;
370 default:
371 return -EINVAL;
372 }
373
374 if (idx >= count)
375 return -EINVAL;
376
377 if (mca_funcs && mca_funcs->mca_get_mca_entry)
^^^^^^^^^
Checked too late! |