| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| The dns_db_findrdataset function in db.c in named in ISC BIND 9.4 before 9.4.3-P3, 9.5 before 9.5.1-P3, and 9.6 before 9.6.1-P1, when configured as a master server, allows remote attackers to cause a denial of service (assertion failure and daemon exit) via an ANY record in the prerequisite section of a crafted dynamic update message. |
| PTZOptics and possibly other ValueHD-based pan-tilt-zoom cameras use default, shared credentials for the administrative web interface. |
| Out of bounds read and write in V8 in Google Chrome prior to 143.0.7499.147 allowed a remote attacker to potentially exploit heap corruption via a crafted HTML page. (Chromium security severity: High) |
| AIS-catcher is a multi-platform AIS receiver. Prior to version 0.64, a heap buffer overflow vulnerability has been identified in the AIS::Message class of AIS-catcher. This vulnerability allows an attacker to write approximately 1KB of arbitrary data into a 128-byte buffer. This issue has been patched in version 0.64. |
| AIS-catcher is a multi-platform AIS receiver. Prior to version 0.64, an integer underflow vulnerability exists in the MQTT parsing logic of AIS-catcher. This vulnerability allows an attacker to trigger a massive Heap Buffer Overflow by sending a malformed MQTT packet with a manipulated Topic Length field. This leads to an immediate Denial of Service (DoS) and, when used as a library, severe Memory Corruption that can be leveraged for Remote Code Execution (RCE). This issue has been patched in version 0.64. |
| Redis is an open source, in-memory database that persists on disk. In versions starting from 7.0.0 to before 8.0.2, a stack-based buffer overflow exists in redis-check-aof due to the use of memcpy with strlen(filepath) when copying a user-supplied file path into a fixed-size stack buffer. This allows an attacker to overflow the stack and potentially achieve code execution. This issue has been patched in version 8.0.2. |
| Kimai 1.30.10 contains a SameSite cookie vulnerability that allows attackers to steal user session cookies through malicious exploitation. Attackers can trick victims into executing a crafted PHP script that captures and writes session cookie information to a file, enabling potential session hijacking. |
| A vulnerability was identified in floooh sokol up to 5d11344150973f15e16d3ec4ee7550a73fb995e0. The impacted element is the function _sg_validate_pipeline_desc in the library sokol_gfx.h. Such manipulation leads to stack-based buffer overflow. The attack must be carried out locally. The exploit is publicly available and might be used. This product utilizes a rolling release system for continuous delivery, and as such, version information for affected or updated releases is not disclosed. The name of the patch is b95c5245ba357967220c9a860c7578a7487937b0. It is best practice to apply a patch to resolve this issue. |
| In the Linux kernel, the following vulnerability has been resolved:
ext4: avoid resizing to a partial cluster size
This patch avoids an attempt to resize the filesystem to an
unaligned cluster boundary. An online resize to a size that is not
integral to cluster size results in the last iteration attempting to
grow the fs by a negative amount, which trips a BUG_ON and leaves the fs
with a corrupted in-memory superblock. |
| In the Linux kernel, the following vulnerability has been resolved:
NFSD: prevent underflow in nfssvc_decode_writeargs()
Smatch complains:
fs/nfsd/nfsxdr.c:341 nfssvc_decode_writeargs()
warn: no lower bound on 'args->len'
Change the type to unsigned to prevent this issue. |
| A buffer overflow in the getSideInfo2() function of Live555 Streaming Media v2018.09.02 allows attackers to cause a Denial of Service (DoS) via a crafted MP3 stream. |
| A heap overflow in the MatroskaFile::createRTPSinkForTrackNumber() function of Live555 Streaming Media v2018.09.02 allows attackers to cause a Denial of Service (DoS) via supplying a crafted MKV file. |
| In the Linux kernel, the following vulnerability has been resolved:
fs: jfs: fix shift-out-of-bounds in dbDiscardAG
This should be applied to most URSAN bugs found recently by syzbot,
by guarding the dbMount. As syzbot feeding rubbish into the bmap
descriptor. |
| In the Linux kernel, the following vulnerability has been resolved:
ata: ahci: Match EM_MAX_SLOTS with SATA_PMP_MAX_PORTS
UBSAN complains about array-index-out-of-bounds:
[ 1.980703] kernel: UBSAN: array-index-out-of-bounds in /build/linux-9H675w/linux-5.15.0/drivers/ata/libahci.c:968:41
[ 1.980709] kernel: index 15 is out of range for type 'ahci_em_priv [8]'
[ 1.980713] kernel: CPU: 0 PID: 209 Comm: scsi_eh_8 Not tainted 5.15.0-25-generic #25-Ubuntu
[ 1.980716] kernel: Hardware name: System manufacturer System Product Name/P5Q3, BIOS 1102 06/11/2010
[ 1.980718] kernel: Call Trace:
[ 1.980721] kernel: <TASK>
[ 1.980723] kernel: show_stack+0x52/0x58
[ 1.980729] kernel: dump_stack_lvl+0x4a/0x5f
[ 1.980734] kernel: dump_stack+0x10/0x12
[ 1.980736] kernel: ubsan_epilogue+0x9/0x45
[ 1.980739] kernel: __ubsan_handle_out_of_bounds.cold+0x44/0x49
[ 1.980742] kernel: ahci_qc_issue+0x166/0x170 [libahci]
[ 1.980748] kernel: ata_qc_issue+0x135/0x240
[ 1.980752] kernel: ata_exec_internal_sg+0x2c4/0x580
[ 1.980754] kernel: ? vprintk_default+0x1d/0x20
[ 1.980759] kernel: ata_exec_internal+0x67/0xa0
[ 1.980762] kernel: sata_pmp_read+0x8d/0xc0
[ 1.980765] kernel: sata_pmp_read_gscr+0x3c/0x90
[ 1.980768] kernel: sata_pmp_attach+0x8b/0x310
[ 1.980771] kernel: ata_eh_revalidate_and_attach+0x28c/0x4b0
[ 1.980775] kernel: ata_eh_recover+0x6b6/0xb30
[ 1.980778] kernel: ? ahci_do_hardreset+0x180/0x180 [libahci]
[ 1.980783] kernel: ? ahci_stop_engine+0xb0/0xb0 [libahci]
[ 1.980787] kernel: ? ahci_do_softreset+0x290/0x290 [libahci]
[ 1.980792] kernel: ? trace_event_raw_event_ata_eh_link_autopsy_qc+0xe0/0xe0
[ 1.980795] kernel: sata_pmp_eh_recover.isra.0+0x214/0x560
[ 1.980799] kernel: sata_pmp_error_handler+0x23/0x40
[ 1.980802] kernel: ahci_error_handler+0x43/0x80 [libahci]
[ 1.980806] kernel: ata_scsi_port_error_handler+0x2b1/0x600
[ 1.980810] kernel: ata_scsi_error+0x9c/0xd0
[ 1.980813] kernel: scsi_error_handler+0xa1/0x180
[ 1.980817] kernel: ? scsi_unjam_host+0x1c0/0x1c0
[ 1.980820] kernel: kthread+0x12a/0x150
[ 1.980823] kernel: ? set_kthread_struct+0x50/0x50
[ 1.980826] kernel: ret_from_fork+0x22/0x30
[ 1.980831] kernel: </TASK>
This happens because sata_pmp_init_links() initialize link->pmp up to
SATA_PMP_MAX_PORTS while em_priv is declared as 8 elements array.
I can't find the maximum Enclosure Management ports specified in AHCI
spec v1.3.1, but "12.2.1 LED message type" states that "Port Multiplier
Information" can utilize 4 bits, which implies it can support up to 16
ports. Hence, use SATA_PMP_MAX_PORTS as EM_MAX_SLOTS to resolve the
issue.
BugLink: https://bugs.launchpad.net/bugs/1970074 |
| In the Linux kernel, the following vulnerability has been resolved:
ext4: fix potential out of bound read in ext4_fc_replay_scan()
For scan loop must ensure that at least EXT4_FC_TAG_BASE_LEN space. If remain
space less than EXT4_FC_TAG_BASE_LEN which will lead to out of bound read
when mounting corrupt file system image.
ADD_RANGE/HEAD/TAIL is needed to add extra check when do journal scan, as this
three tags will read data during scan, tag length couldn't less than data length
which will read. |
| In the Linux kernel, the following vulnerability has been resolved:
md-raid10: fix KASAN warning
There's a KASAN warning in raid10_remove_disk when running the lvm
test lvconvert-raid-reshape.sh. We fix this warning by verifying that the
value "number" is valid.
BUG: KASAN: slab-out-of-bounds in raid10_remove_disk+0x61/0x2a0 [raid10]
Read of size 8 at addr ffff889108f3d300 by task mdX_raid10/124682
CPU: 3 PID: 124682 Comm: mdX_raid10 Not tainted 5.19.0-rc6 #1
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.14.0-2 04/01/2014
Call Trace:
<TASK>
dump_stack_lvl+0x34/0x44
print_report.cold+0x45/0x57a
? __lock_text_start+0x18/0x18
? raid10_remove_disk+0x61/0x2a0 [raid10]
kasan_report+0xa8/0xe0
? raid10_remove_disk+0x61/0x2a0 [raid10]
raid10_remove_disk+0x61/0x2a0 [raid10]
Buffer I/O error on dev dm-76, logical block 15344, async page read
? __mutex_unlock_slowpath.constprop.0+0x1e0/0x1e0
remove_and_add_spares+0x367/0x8a0 [md_mod]
? super_written+0x1c0/0x1c0 [md_mod]
? mutex_trylock+0xac/0x120
? _raw_spin_lock+0x72/0xc0
? _raw_spin_lock_bh+0xc0/0xc0
md_check_recovery+0x848/0x960 [md_mod]
raid10d+0xcf/0x3360 [raid10]
? sched_clock_cpu+0x185/0x1a0
? rb_erase+0x4d4/0x620
? var_wake_function+0xe0/0xe0
? psi_group_change+0x411/0x500
? preempt_count_sub+0xf/0xc0
? _raw_spin_lock_irqsave+0x78/0xc0
? __lock_text_start+0x18/0x18
? raid10_sync_request+0x36c0/0x36c0 [raid10]
? preempt_count_sub+0xf/0xc0
? _raw_spin_unlock_irqrestore+0x19/0x40
? del_timer_sync+0xa9/0x100
? try_to_del_timer_sync+0xc0/0xc0
? _raw_spin_lock_irqsave+0x78/0xc0
? __lock_text_start+0x18/0x18
? _raw_spin_unlock_irq+0x11/0x24
? __list_del_entry_valid+0x68/0xa0
? finish_wait+0xa3/0x100
md_thread+0x161/0x260 [md_mod]
? unregister_md_personality+0xa0/0xa0 [md_mod]
? _raw_spin_lock_irqsave+0x78/0xc0
? prepare_to_wait_event+0x2c0/0x2c0
? unregister_md_personality+0xa0/0xa0 [md_mod]
kthread+0x148/0x180
? kthread_complete_and_exit+0x20/0x20
ret_from_fork+0x1f/0x30
</TASK>
Allocated by task 124495:
kasan_save_stack+0x1e/0x40
__kasan_kmalloc+0x80/0xa0
setup_conf+0x140/0x5c0 [raid10]
raid10_run+0x4cd/0x740 [raid10]
md_run+0x6f9/0x1300 [md_mod]
raid_ctr+0x2531/0x4ac0 [dm_raid]
dm_table_add_target+0x2b0/0x620 [dm_mod]
table_load+0x1c8/0x400 [dm_mod]
ctl_ioctl+0x29e/0x560 [dm_mod]
dm_compat_ctl_ioctl+0x7/0x20 [dm_mod]
__do_compat_sys_ioctl+0xfa/0x160
do_syscall_64+0x90/0xc0
entry_SYSCALL_64_after_hwframe+0x46/0xb0
Last potentially related work creation:
kasan_save_stack+0x1e/0x40
__kasan_record_aux_stack+0x9e/0xc0
kvfree_call_rcu+0x84/0x480
timerfd_release+0x82/0x140
L __fput+0xfa/0x400
task_work_run+0x80/0xc0
exit_to_user_mode_prepare+0x155/0x160
syscall_exit_to_user_mode+0x12/0x40
do_syscall_64+0x42/0xc0
entry_SYSCALL_64_after_hwframe+0x46/0xb0
Second to last potentially related work creation:
kasan_save_stack+0x1e/0x40
__kasan_record_aux_stack+0x9e/0xc0
kvfree_call_rcu+0x84/0x480
timerfd_release+0x82/0x140
__fput+0xfa/0x400
task_work_run+0x80/0xc0
exit_to_user_mode_prepare+0x155/0x160
syscall_exit_to_user_mode+0x12/0x40
do_syscall_64+0x42/0xc0
entry_SYSCALL_64_after_hwframe+0x46/0xb0
The buggy address belongs to the object at ffff889108f3d200
which belongs to the cache kmalloc-256 of size 256
The buggy address is located 0 bytes to the right of
256-byte region [ffff889108f3d200, ffff889108f3d300)
The buggy address belongs to the physical page:
page:000000007ef2a34c refcount:1 mapcount:0 mapping:0000000000000000 index:0x0 pfn:0x1108f3c
head:000000007ef2a34c order:2 compound_mapcount:0 compound_pincount:0
flags: 0x4000000000010200(slab|head|zone=2)
raw: 4000000000010200 0000000000000000 dead000000000001 ffff889100042b40
raw: 0000000000000000 0000000080200020 00000001ffffffff 0000000000000000
page dumped because: kasan: bad access detected
Memory state around the buggy address:
ffff889108f3d200: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
ffff889108f3d280: 00 00
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
dm raid: fix address sanitizer warning in raid_status
There is this warning when using a kernel with the address sanitizer
and running this testsuite:
https://gitlab.com/cki-project/kernel-tests/-/tree/main/storage/swraid/scsi_raid
==================================================================
BUG: KASAN: slab-out-of-bounds in raid_status+0x1747/0x2820 [dm_raid]
Read of size 4 at addr ffff888079d2c7e8 by task lvcreate/13319
CPU: 0 PID: 13319 Comm: lvcreate Not tainted 5.18.0-0.rc3.<snip> #1
Hardware name: Red Hat KVM, BIOS 0.5.1 01/01/2011
Call Trace:
<TASK>
dump_stack_lvl+0x6a/0x9c
print_address_description.constprop.0+0x1f/0x1e0
print_report.cold+0x55/0x244
kasan_report+0xc9/0x100
raid_status+0x1747/0x2820 [dm_raid]
dm_ima_measure_on_table_load+0x4b8/0xca0 [dm_mod]
table_load+0x35c/0x630 [dm_mod]
ctl_ioctl+0x411/0x630 [dm_mod]
dm_ctl_ioctl+0xa/0x10 [dm_mod]
__x64_sys_ioctl+0x12a/0x1a0
do_syscall_64+0x5b/0x80
The warning is caused by reading conf->max_nr_stripes in raid_status. The
code in raid_status reads mddev->private, casts it to struct r5conf and
reads the entry max_nr_stripes.
However, if we have different raid type than 4/5/6, mddev->private
doesn't point to struct r5conf; it may point to struct r0conf, struct
r1conf, struct r10conf or struct mpconf. If we cast a pointer to one
of these structs to struct r5conf, we will be reading invalid memory
and KASAN warns about it.
Fix this bug by reading struct r5conf only if raid type is 4, 5 or 6. |
| In the Linux kernel, the following vulnerability has been resolved:
vt: Clear selection before changing the font
When changing the console font with ioctl(KDFONTOP) the new font size
can be bigger than the previous font. A previous selection may thus now
be outside of the new screen size and thus trigger out-of-bounds
accesses to graphics memory if the selection is removed in
vc_do_resize().
Prevent such out-of-memory accesses by dropping the selection before the
various con_font_set() console handlers are called. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: brcmfmac: Check the count value of channel spec to prevent out-of-bounds reads
This patch fixes slab-out-of-bounds reads in brcmfmac that occur in
brcmf_construct_chaninfo() and brcmf_enable_bw40_2g() when the count
value of channel specifications provided by the device is greater than
the length of 'list->element[]', decided by the size of the 'list'
allocated with kzalloc(). The patch adds checks that make the functions
free the buffer and return -EINVAL if that is the case. Note that the
negative return is handled by the caller, brcmf_setup_wiphybands() or
brcmf_cfg80211_attach().
Found by a modified version of syzkaller.
Crash Report from brcmf_construct_chaninfo():
==================================================================
BUG: KASAN: slab-out-of-bounds in brcmf_setup_wiphybands+0x1238/0x1430
Read of size 4 at addr ffff888115f24600 by task kworker/0:2/1896
CPU: 0 PID: 1896 Comm: kworker/0:2 Tainted: G W O 5.14.0+ #132
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.12.1-0-ga5cab58e9a3f-prebuilt.qemu.org 04/01/2014
Workqueue: usb_hub_wq hub_event
Call Trace:
dump_stack_lvl+0x57/0x7d
print_address_description.constprop.0.cold+0x93/0x334
kasan_report.cold+0x83/0xdf
brcmf_setup_wiphybands+0x1238/0x1430
brcmf_cfg80211_attach+0x2118/0x3fd0
brcmf_attach+0x389/0xd40
brcmf_usb_probe+0x12de/0x1690
usb_probe_interface+0x25f/0x710
really_probe+0x1be/0xa90
__driver_probe_device+0x2ab/0x460
driver_probe_device+0x49/0x120
__device_attach_driver+0x18a/0x250
bus_for_each_drv+0x123/0x1a0
__device_attach+0x207/0x330
bus_probe_device+0x1a2/0x260
device_add+0xa61/0x1ce0
usb_set_configuration+0x984/0x1770
usb_generic_driver_probe+0x69/0x90
usb_probe_device+0x9c/0x220
really_probe+0x1be/0xa90
__driver_probe_device+0x2ab/0x460
driver_probe_device+0x49/0x120
__device_attach_driver+0x18a/0x250
bus_for_each_drv+0x123/0x1a0
__device_attach+0x207/0x330
bus_probe_device+0x1a2/0x260
device_add+0xa61/0x1ce0
usb_new_device.cold+0x463/0xf66
hub_event+0x10d5/0x3330
process_one_work+0x873/0x13e0
worker_thread+0x8b/0xd10
kthread+0x379/0x450
ret_from_fork+0x1f/0x30
Allocated by task 1896:
kasan_save_stack+0x1b/0x40
__kasan_kmalloc+0x7c/0x90
kmem_cache_alloc_trace+0x19e/0x330
brcmf_setup_wiphybands+0x290/0x1430
brcmf_cfg80211_attach+0x2118/0x3fd0
brcmf_attach+0x389/0xd40
brcmf_usb_probe+0x12de/0x1690
usb_probe_interface+0x25f/0x710
really_probe+0x1be/0xa90
__driver_probe_device+0x2ab/0x460
driver_probe_device+0x49/0x120
__device_attach_driver+0x18a/0x250
bus_for_each_drv+0x123/0x1a0
__device_attach+0x207/0x330
bus_probe_device+0x1a2/0x260
device_add+0xa61/0x1ce0
usb_set_configuration+0x984/0x1770
usb_generic_driver_probe+0x69/0x90
usb_probe_device+0x9c/0x220
really_probe+0x1be/0xa90
__driver_probe_device+0x2ab/0x460
driver_probe_device+0x49/0x120
__device_attach_driver+0x18a/0x250
bus_for_each_drv+0x123/0x1a0
__device_attach+0x207/0x330
bus_probe_device+0x1a2/0x260
device_add+0xa61/0x1ce0
usb_new_device.cold+0x463/0xf66
hub_event+0x10d5/0x3330
process_one_work+0x873/0x13e0
worker_thread+0x8b/0xd10
kthread+0x379/0x450
ret_from_fork+0x1f/0x30
The buggy address belongs to the object at ffff888115f24000
which belongs to the cache kmalloc-2k of size 2048
The buggy address is located 1536 bytes inside of
2048-byte region [ffff888115f24000, ffff888115f24800)
Memory state around the buggy address:
ffff888115f24500: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
ffff888115f24580: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
>ffff888115f24600: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc
^
ffff888115f24680: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc
ffff888115f24700: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc
==================================================================
Crash Report from brcmf_enable_bw40_2g():
==========
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
ipv6: Fix signed integer overflow in __ip6_append_data
Resurrect ubsan overflow checks and ubsan report this warning,
fix it by change the variable [length] type to size_t.
UBSAN: signed-integer-overflow in net/ipv6/ip6_output.c:1489:19
2147479552 + 8567 cannot be represented in type 'int'
CPU: 0 PID: 253 Comm: err Not tainted 5.16.0+ #1
Hardware name: linux,dummy-virt (DT)
Call trace:
dump_backtrace+0x214/0x230
show_stack+0x30/0x78
dump_stack_lvl+0xf8/0x118
dump_stack+0x18/0x30
ubsan_epilogue+0x18/0x60
handle_overflow+0xd0/0xf0
__ubsan_handle_add_overflow+0x34/0x44
__ip6_append_data.isra.48+0x1598/0x1688
ip6_append_data+0x128/0x260
udpv6_sendmsg+0x680/0xdd0
inet6_sendmsg+0x54/0x90
sock_sendmsg+0x70/0x88
____sys_sendmsg+0xe8/0x368
___sys_sendmsg+0x98/0xe0
__sys_sendmmsg+0xf4/0x3b8
__arm64_sys_sendmmsg+0x34/0x48
invoke_syscall+0x64/0x160
el0_svc_common.constprop.4+0x124/0x300
do_el0_svc+0x44/0xc8
el0_svc+0x3c/0x1e8
el0t_64_sync_handler+0x88/0xb0
el0t_64_sync+0x16c/0x170
Changes since v1:
-Change the variable [length] type to unsigned, as Eric Dumazet suggested.
Changes since v2:
-Don't change exthdrlen type in ip6_make_skb, as Paolo Abeni suggested.
Changes since v3:
-Don't change ulen type in udpv6_sendmsg and l2tp_ip6_sendmsg, as
Jakub Kicinski suggested. |