Search Results (16568 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2023-53712 1 Linux 1 Linux Kernel 2026-01-05 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ARM: 9317/1: kexec: Make smp stop calls asynchronous If a panic is triggered by a hrtimer interrupt all online cpus will be notified and set offline. But as highlighted by commit 19dbdcb8039c ("smp: Warn on function calls from softirq context") this call should not be made synchronous with disabled interrupts: softdog: Initiating panic Kernel panic - not syncing: Software Watchdog Timer expired WARNING: CPU: 1 PID: 0 at kernel/smp.c:753 smp_call_function_many_cond unwind_backtrace: show_stack dump_stack_lvl __warn warn_slowpath_fmt smp_call_function_many_cond smp_call_function crash_smp_send_stop.part.0 machine_crash_shutdown __crash_kexec panic softdog_fire __hrtimer_run_queues hrtimer_interrupt Make the smp call for machine_crash_nonpanic_core() asynchronous.
CVE-2023-53708 1 Linux 1 Linux Kernel 2026-01-05 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ACPI: x86: s2idle: Catch multiple ACPI_TYPE_PACKAGE objects If a badly constructed firmware includes multiple `ACPI_TYPE_PACKAGE` objects while evaluating the AMD LPS0 _DSM, there will be a memory leak. Explicitly guard against this.
CVE-2023-53695 1 Linux 1 Linux Kernel 2026-01-05 7.0 High
In the Linux kernel, the following vulnerability has been resolved: udf: Detect system inodes linked into directory hierarchy When UDF filesystem is corrupted, hidden system inodes can be linked into directory hierarchy which is an avenue for further serious corruption of the filesystem and kernel confusion as noticed by syzbot fuzzed images. Refuse to access system inodes linked into directory hierarchy and vice versa.
CVE-2023-53684 1 Linux 1 Linux Kernel 2026-01-05 7.0 High
In the Linux kernel, the following vulnerability has been resolved: xfrm: Zero padding when dumping algos and encap When copying data to user-space we should ensure that only valid data is copied over. Padding in structures may be filled with random (possibly sensitve) data and should never be given directly to user-space. This patch fixes the copying of xfrm algorithms and the encap template in xfrm_user so that padding is zeroed.
CVE-2023-53682 1 Linux 1 Linux Kernel 2026-01-05 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: hwmon: (xgene) Fix ioremap and memremap leak Smatch reports: drivers/hwmon/xgene-hwmon.c:757 xgene_hwmon_probe() warn: 'ctx->pcc_comm_addr' from ioremap() not released on line: 757. This is because in drivers/hwmon/xgene-hwmon.c:701 xgene_hwmon_probe(), ioremap and memremap is not released, which may cause a leak. To fix this, ioremap and memremap is modified to devm_ioremap and devm_memremap. [groeck: Fixed formatting and subject]
CVE-2023-53620 1 Linux 1 Linux Kernel 2026-01-05 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: md: fix soft lockup in status_resync status_resync() will calculate 'curr_resync - recovery_active' to show user a progress bar like following: [============>........] resync = 61.4% 'curr_resync' and 'recovery_active' is updated in md_do_sync(), and status_resync() can read them concurrently, hence it's possible that 'curr_resync - recovery_active' can overflow to a huge number. In this case status_resync() will be stuck in the loop to print a large amount of '=', which will end up soft lockup. Fix the problem by setting 'resync' to MD_RESYNC_ACTIVE in this case, this way resync in progress will be reported to user.
CVE-2023-53395 1 Linux 1 Linux Kernel 2026-01-05 7.8 High
In the Linux kernel, the following vulnerability has been resolved: ACPICA: Add AML_NO_OPERAND_RESOLVE flag to Timer ACPICA commit 90310989a0790032f5a0140741ff09b545af4bc5 According to the ACPI specification 19.6.134, no argument is required to be passed for ASL Timer instruction. For taking care of no argument, AML_NO_OPERAND_RESOLVE flag is added to ASL Timer instruction opcode. When ASL timer instruction interpreted by ACPI interpreter, getting error. After adding AML_NO_OPERAND_RESOLVE flag to ASL Timer instruction opcode, issue is not observed. ============================================================= UBSAN: array-index-out-of-bounds in acpica/dswexec.c:401:12 index -1 is out of range for type 'union acpi_operand_object *[9]' CPU: 37 PID: 1678 Comm: cat Not tainted 6.0.0-dev-th500-6.0.y-1+bcf8c46459e407-generic-64k HW name: NVIDIA BIOS v1.1.1-d7acbfc-dirty 12/19/2022 Call trace: dump_backtrace+0xe0/0x130 show_stack+0x20/0x60 dump_stack_lvl+0x68/0x84 dump_stack+0x18/0x34 ubsan_epilogue+0x10/0x50 __ubsan_handle_out_of_bounds+0x80/0x90 acpi_ds_exec_end_op+0x1bc/0x6d8 acpi_ps_parse_loop+0x57c/0x618 acpi_ps_parse_aml+0x1e0/0x4b4 acpi_ps_execute_method+0x24c/0x2b8 acpi_ns_evaluate+0x3a8/0x4bc acpi_evaluate_object+0x15c/0x37c acpi_evaluate_integer+0x54/0x15c show_power+0x8c/0x12c [acpi_power_meter]
CVE-2023-53679 1 Linux 1 Linux Kernel 2026-01-05 7.0 High
In the Linux kernel, the following vulnerability has been resolved: wifi: mt7601u: fix an integer underflow Fix an integer underflow that leads to a null pointer dereference in 'mt7601u_rx_skb_from_seg()'. The variable 'dma_len' in the URB packet could be manipulated, which could trigger an integer underflow of 'seg_len' in 'mt7601u_rx_process_seg()'. This underflow subsequently causes the 'bad_frame' checks in 'mt7601u_rx_skb_from_seg()' to be bypassed, eventually leading to a dereference of the pointer 'p', which is a null pointer. Ensure that 'dma_len' is greater than 'min_seg_len'. Found by a modified version of syzkaller. KASAN: null-ptr-deref in range [0x0000000000000008-0x000000000000000f] CPU: 0 PID: 12 Comm: ksoftirqd/0 Tainted: G W O 5.14.0+ #139 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.12.1-0-ga5cab58e9a3f-prebuilt.qemu.org 04/01/2014 RIP: 0010:skb_add_rx_frag+0x143/0x370 Code: e2 07 83 c2 03 38 ca 7c 08 84 c9 0f 85 86 01 00 00 4c 8d 7d 08 44 89 68 08 48 b8 00 00 00 00 00 fc ff df 4c 89 fa 48 c1 ea 03 <80> 3c 02 00 0f 85 cd 01 00 00 48 8b 45 08 a8 01 0f 85 3d 01 00 00 RSP: 0018:ffffc900000cfc90 EFLAGS: 00010202 RAX: dffffc0000000000 RBX: ffff888115520dc0 RCX: 0000000000000000 RDX: 0000000000000001 RSI: ffff8881118430c0 RDI: ffff8881118430f8 RBP: 0000000000000000 R08: 0000000000000e09 R09: 0000000000000010 R10: ffff888111843017 R11: ffffed1022308602 R12: 0000000000000000 R13: 0000000000000e09 R14: 0000000000000010 R15: 0000000000000008 FS: 0000000000000000(0000) GS:ffff88811a800000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 000000004035af40 CR3: 00000001157f2000 CR4: 0000000000750ef0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 PKRU: 55555554 Call Trace: mt7601u_rx_tasklet+0xc73/0x1270 ? mt7601u_submit_rx_buf.isra.0+0x510/0x510 ? tasklet_action_common.isra.0+0x79/0x2f0 tasklet_action_common.isra.0+0x206/0x2f0 __do_softirq+0x1b5/0x880 ? tasklet_unlock+0x30/0x30 run_ksoftirqd+0x26/0x50 smpboot_thread_fn+0x34f/0x7d0 ? smpboot_register_percpu_thread+0x370/0x370 kthread+0x3a1/0x480 ? set_kthread_struct+0x120/0x120 ret_from_fork+0x1f/0x30 Modules linked in: 88XXau(O) 88x2bu(O) ---[ end trace 57f34f93b4da0f9b ]--- RIP: 0010:skb_add_rx_frag+0x143/0x370 Code: e2 07 83 c2 03 38 ca 7c 08 84 c9 0f 85 86 01 00 00 4c 8d 7d 08 44 89 68 08 48 b8 00 00 00 00 00 fc ff df 4c 89 fa 48 c1 ea 03 <80> 3c 02 00 0f 85 cd 01 00 00 48 8b 45 08 a8 01 0f 85 3d 01 00 00 RSP: 0018:ffffc900000cfc90 EFLAGS: 00010202 RAX: dffffc0000000000 RBX: ffff888115520dc0 RCX: 0000000000000000 RDX: 0000000000000001 RSI: ffff8881118430c0 RDI: ffff8881118430f8 RBP: 0000000000000000 R08: 0000000000000e09 R09: 0000000000000010 R10: ffff888111843017 R11: ffffed1022308602 R12: 0000000000000000 R13: 0000000000000e09 R14: 0000000000000010 R15: 0000000000000008 FS: 0000000000000000(0000) GS:ffff88811a800000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 000000004035af40 CR3: 00000001157f2000 CR4: 0000000000750ef0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 PKRU: 55555554
CVE-2023-53676 1 Linux 1 Linux Kernel 2026-01-05 7.0 High
In the Linux kernel, the following vulnerability has been resolved: scsi: target: iscsi: Fix buffer overflow in lio_target_nacl_info_show() The function lio_target_nacl_info_show() uses sprintf() in a loop to print details for every iSCSI connection in a session without checking for the buffer length. With enough iSCSI connections it's possible to overflow the buffer provided by configfs and corrupt the memory. This patch replaces sprintf() with sysfs_emit_at() that checks for buffer boundries.
CVE-2023-53675 1 Linux 1 Linux Kernel 2026-01-05 7.0 High
In the Linux kernel, the following vulnerability has been resolved: scsi: ses: Fix possible desc_ptr out-of-bounds accesses Sanitize possible desc_ptr out-of-bounds accesses in ses_enclosure_data_process().
CVE-2023-53672 1 Linux 1 Linux Kernel 2026-01-05 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: btrfs: output extra debug info if we failed to find an inline backref [BUG] Syzbot reported several warning triggered inside lookup_inline_extent_backref(). [CAUSE] As usual, the reproducer doesn't reliably trigger locally here, but at least we know the WARN_ON() is triggered when an inline backref can not be found, and it can only be triggered when @insert is true. (I.e. inserting a new inline backref, which means the backref should already exist) [ENHANCEMENT] After the WARN_ON(), dump all the parameters and the extent tree leaf to help debug.
CVE-2023-53671 1 Linux 1 Linux Kernel 2026-01-05 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: srcu: Delegate work to the boot cpu if using SRCU_SIZE_SMALL Commit 994f706872e6 ("srcu: Make Tree SRCU able to operate without snp_node array") assumes that cpu 0 is always online. However, there really are situations when some other CPU is the boot CPU, for example, when booting a kdump kernel with the maxcpus=1 boot parameter. On PowerPC, the kdump kernel can hang as follows: ... [ 1.740036] systemd[1]: Hostname set to <xyz.com> [ 243.686240] INFO: task systemd:1 blocked for more than 122 seconds. [ 243.686264] Not tainted 6.1.0-rc1 #1 [ 243.686272] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. [ 243.686281] task:systemd state:D stack:0 pid:1 ppid:0 flags:0x00042000 [ 243.686296] Call Trace: [ 243.686301] [c000000016657640] [c000000016657670] 0xc000000016657670 (unreliable) [ 243.686317] [c000000016657830] [c00000001001dec0] __switch_to+0x130/0x220 [ 243.686333] [c000000016657890] [c000000010f607b8] __schedule+0x1f8/0x580 [ 243.686347] [c000000016657940] [c000000010f60bb4] schedule+0x74/0x140 [ 243.686361] [c0000000166579b0] [c000000010f699b8] schedule_timeout+0x168/0x1c0 [ 243.686374] [c000000016657a80] [c000000010f61de8] __wait_for_common+0x148/0x360 [ 243.686387] [c000000016657b20] [c000000010176bb0] __flush_work.isra.0+0x1c0/0x3d0 [ 243.686401] [c000000016657bb0] [c0000000105f2768] fsnotify_wait_marks_destroyed+0x28/0x40 [ 243.686415] [c000000016657bd0] [c0000000105f21b8] fsnotify_destroy_group+0x68/0x160 [ 243.686428] [c000000016657c40] [c0000000105f6500] inotify_release+0x30/0xa0 [ 243.686440] [c000000016657cb0] [c0000000105751a8] __fput+0xc8/0x350 [ 243.686452] [c000000016657d00] [c00000001017d524] task_work_run+0xe4/0x170 [ 243.686464] [c000000016657d50] [c000000010020e94] do_notify_resume+0x134/0x140 [ 243.686478] [c000000016657d80] [c00000001002eb18] interrupt_exit_user_prepare_main+0x198/0x270 [ 243.686493] [c000000016657de0] [c00000001002ec60] syscall_exit_prepare+0x70/0x180 [ 243.686505] [c000000016657e10] [c00000001000bf7c] system_call_vectored_common+0xfc/0x280 [ 243.686520] --- interrupt: 3000 at 0x7fffa47d5ba4 [ 243.686528] NIP: 00007fffa47d5ba4 LR: 0000000000000000 CTR: 0000000000000000 [ 243.686538] REGS: c000000016657e80 TRAP: 3000 Not tainted (6.1.0-rc1) [ 243.686548] MSR: 800000000000d033 <SF,EE,PR,ME,IR,DR,RI,LE> CR: 42044440 XER: 00000000 [ 243.686572] IRQMASK: 0 [ 243.686572] GPR00: 0000000000000006 00007ffffa606710 00007fffa48e7200 0000000000000000 [ 243.686572] GPR04: 0000000000000002 000000000000000a 0000000000000000 0000000000000001 [ 243.686572] GPR08: 000001000c172dd0 0000000000000000 0000000000000000 0000000000000000 [ 243.686572] GPR12: 0000000000000000 00007fffa4ff4bc0 0000000000000000 0000000000000000 [ 243.686572] GPR16: 0000000000000000 0000000000000000 0000000000000000 0000000000000000 [ 243.686572] GPR20: 0000000132dfdc50 000000000000000e 0000000000189375 0000000000000000 [ 243.686572] GPR24: 00007ffffa606ae0 0000000000000005 000001000c185490 000001000c172570 [ 243.686572] GPR28: 000001000c172990 000001000c184850 000001000c172e00 00007fffa4fedd98 [ 243.686683] NIP [00007fffa47d5ba4] 0x7fffa47d5ba4 [ 243.686691] LR [0000000000000000] 0x0 [ 243.686698] --- interrupt: 3000 [ 243.686708] INFO: task kworker/u16:1:24 blocked for more than 122 seconds. [ 243.686717] Not tainted 6.1.0-rc1 #1 [ 243.686724] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. [ 243.686733] task:kworker/u16:1 state:D stack:0 pid:24 ppid:2 flags:0x00000800 [ 243.686747] Workqueue: events_unbound fsnotify_mark_destroy_workfn [ 243.686758] Call Trace: [ 243.686762] [c0000000166736e0] [c00000004fd91000] 0xc00000004fd91000 (unreliable) [ 243.686775] [c0000000166738d0] [c00000001001dec0] __switch_to+0x130/0x220 [ 243.686788] [c000000016673930] [c000000010f607b8] __schedule+0x1f8/0x ---truncated---
CVE-2023-53661 1 Linux 1 Linux Kernel 2026-01-05 7.0 High
In the Linux kernel, the following vulnerability has been resolved: bnxt: avoid overflow in bnxt_get_nvram_directory() The value of an arithmetic expression is subject of possible overflow due to a failure to cast operands to a larger data type before performing arithmetic. Used macro for multiplication instead operator for avoiding overflow. Found by Security Code and Linux Verification Center (linuxtesting.org) with SVACE.
CVE-2023-53644 1 Linux 1 Linux Kernel 2026-01-05 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: media: radio-shark: Add endpoint checks The syzbot fuzzer was able to provoke a WARNING from the radio-shark2 driver: ------------[ cut here ]------------ usb 1-1: BOGUS urb xfer, pipe 1 != type 3 WARNING: CPU: 0 PID: 3271 at drivers/usb/core/urb.c:504 usb_submit_urb+0xed2/0x1880 drivers/usb/core/urb.c:504 Modules linked in: CPU: 0 PID: 3271 Comm: kworker/0:3 Not tainted 6.1.0-rc4-syzkaller #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 10/26/2022 Workqueue: usb_hub_wq hub_event RIP: 0010:usb_submit_urb+0xed2/0x1880 drivers/usb/core/urb.c:504 Code: 7c 24 18 e8 00 36 ea fb 48 8b 7c 24 18 e8 36 1c 02 ff 41 89 d8 44 89 e1 4c 89 ea 48 89 c6 48 c7 c7 a0 b6 90 8a e8 9a 29 b8 03 <0f> 0b e9 58 f8 ff ff e8 d2 35 ea fb 48 81 c5 c0 05 00 00 e9 84 f7 RSP: 0018:ffffc90003876dd0 EFLAGS: 00010282 RAX: 0000000000000000 RBX: 0000000000000003 RCX: 0000000000000000 RDX: ffff8880750b0040 RSI: ffffffff816152b8 RDI: fffff5200070edac RBP: ffff8880172d81e0 R08: 0000000000000005 R09: 0000000000000000 R10: 0000000080000000 R11: 0000000000000000 R12: 0000000000000001 R13: ffff8880285c5040 R14: 0000000000000002 R15: ffff888017158200 FS: 0000000000000000(0000) GS:ffff8880b9a00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007ffe03235b90 CR3: 000000000bc8e000 CR4: 00000000003506f0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: <TASK> usb_start_wait_urb+0x101/0x4b0 drivers/usb/core/message.c:58 usb_bulk_msg+0x226/0x550 drivers/usb/core/message.c:387 shark_write_reg+0x1ff/0x2e0 drivers/media/radio/radio-shark2.c:88 ... The problem was caused by the fact that the driver does not check whether the endpoints it uses are actually present and have the appropriate types. This can be fixed by adding a simple check of these endpoints (and similarly for the radio-shark driver).
CVE-2023-53622 1 Linux 1 Linux Kernel 2026-01-05 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: gfs2: Fix possible data races in gfs2_show_options() Some fields such as gt_logd_secs of the struct gfs2_tune are accessed without holding the lock gt_spin in gfs2_show_options(): val = sdp->sd_tune.gt_logd_secs; if (val != 30) seq_printf(s, ",commit=%d", val); And thus can cause data races when gfs2_show_options() and other functions such as gfs2_reconfigure() are concurrently executed: spin_lock(&gt->gt_spin); gt->gt_logd_secs = newargs->ar_commit; To fix these possible data races, the lock sdp->sd_tune.gt_spin is acquired before accessing the fields of gfs2_tune and released after these accesses. Further changes by Andreas: - Don't hold the spin lock over the seq_printf operations.
CVE-2023-53618 1 Linux 1 Linux Kernel 2026-01-05 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: btrfs: reject invalid reloc tree root keys with stack dump [BUG] Syzbot reported a crash that an ASSERT() got triggered inside prepare_to_merge(). That ASSERT() makes sure the reloc tree is properly pointed back by its subvolume tree. [CAUSE] After more debugging output, it turns out we had an invalid reloc tree: BTRFS error (device loop1): reloc tree mismatch, root 8 has no reloc root, expect reloc root key (-8, 132, 8) gen 17 Note the above root key is (TREE_RELOC_OBJECTID, ROOT_ITEM, QUOTA_TREE_OBJECTID), meaning it's a reloc tree for quota tree. But reloc trees can only exist for subvolumes, as for non-subvolume trees, we just COW the involved tree block, no need to create a reloc tree since those tree blocks won't be shared with other trees. Only subvolumes tree can share tree blocks with other trees (thus they have BTRFS_ROOT_SHAREABLE flag). Thus this new debug output proves my previous assumption that corrupted on-disk data can trigger that ASSERT(). [FIX] Besides the dedicated fix and the graceful exit, also let tree-checker to check such root keys, to make sure reloc trees can only exist for subvolumes.
CVE-2023-53616 1 Linux 1 Linux Kernel 2026-01-05 7.0 High
In the Linux kernel, the following vulnerability has been resolved: jfs: fix invalid free of JFS_IP(ipimap)->i_imap in diUnmount syzbot found an invalid-free in diUnmount: BUG: KASAN: double-free in slab_free mm/slub.c:3661 [inline] BUG: KASAN: double-free in __kmem_cache_free+0x71/0x110 mm/slub.c:3674 Free of addr ffff88806f410000 by task syz-executor131/3632 CPU: 0 PID: 3632 Comm: syz-executor131 Not tainted 6.1.0-rc7-syzkaller-00012-gca57f02295f1 #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 10/26/2022 Call Trace: <TASK> __dump_stack lib/dump_stack.c:88 [inline] dump_stack_lvl+0x1b1/0x28e lib/dump_stack.c:106 print_address_description+0x74/0x340 mm/kasan/report.c:284 print_report+0x107/0x1f0 mm/kasan/report.c:395 kasan_report_invalid_free+0xac/0xd0 mm/kasan/report.c:460 ____kasan_slab_free+0xfb/0x120 kasan_slab_free include/linux/kasan.h:177 [inline] slab_free_hook mm/slub.c:1724 [inline] slab_free_freelist_hook+0x12e/0x1a0 mm/slub.c:1750 slab_free mm/slub.c:3661 [inline] __kmem_cache_free+0x71/0x110 mm/slub.c:3674 diUnmount+0xef/0x100 fs/jfs/jfs_imap.c:195 jfs_umount+0x108/0x370 fs/jfs/jfs_umount.c:63 jfs_put_super+0x86/0x190 fs/jfs/super.c:194 generic_shutdown_super+0x130/0x310 fs/super.c:492 kill_block_super+0x79/0xd0 fs/super.c:1428 deactivate_locked_super+0xa7/0xf0 fs/super.c:332 cleanup_mnt+0x494/0x520 fs/namespace.c:1186 task_work_run+0x243/0x300 kernel/task_work.c:179 exit_task_work include/linux/task_work.h:38 [inline] do_exit+0x664/0x2070 kernel/exit.c:820 do_group_exit+0x1fd/0x2b0 kernel/exit.c:950 __do_sys_exit_group kernel/exit.c:961 [inline] __se_sys_exit_group kernel/exit.c:959 [inline] __x64_sys_exit_group+0x3b/0x40 kernel/exit.c:959 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x3d/0xb0 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x63/0xcd [...] JFS_IP(ipimap)->i_imap is not setting to NULL after free in diUnmount. If jfs_remount() free JFS_IP(ipimap)->i_imap but then failed at diMount(). JFS_IP(ipimap)->i_imap will be freed once again. Fix this problem by setting JFS_IP(ipimap)->i_imap to NULL after free.
CVE-2023-53612 1 Linux 1 Linux Kernel 2026-01-05 7.0 High
In the Linux kernel, the following vulnerability has been resolved: hwmon: (coretemp) Simplify platform device handling Coretemp's platform driver is unconventional. All the real work is done globally by the initcall and CPU hotplug notifiers, while the "driver" effectively just wraps an allocation and the registration of the hwmon interface in a long-winded round-trip through the driver core. The whole logic of dynamically creating and destroying platform devices to bring the interfaces up and down is error prone, since it assumes platform_device_add() will synchronously bind the driver and set drvdata before it returns, thus results in a NULL dereference if drivers_autoprobe is turned off for the platform bus. Furthermore, the unusual approach of doing that from within a CPU hotplug notifier, already commented in the code that it deadlocks suspend, also causes lockdep issues for other drivers or subsystems which may want to legitimately register a CPU hotplug notifier from a platform bus notifier. All of these issues can be solved by ripping this unusual behaviour out completely, simply tying the platform devices to the lifetime of the module itself, and directly managing the hwmon interfaces from the hotplug notifiers. There is a slight user-visible change in that /sys/bus/platform/drivers/coretemp will no longer appear, and /sys/devices/platform/coretemp.n will remain present if package n is hotplugged off, but hwmon users should really only be looking for the presence of the hwmon interfaces, whose behaviour remains unchanged.
CVE-2023-53608 1 Linux 1 Linux Kernel 2026-01-05 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: nilfs2: fix potential UAF of struct nilfs_sc_info in nilfs_segctor_thread() The finalization of nilfs_segctor_thread() can race with nilfs_segctor_kill_thread() which terminates that thread, potentially causing a use-after-free BUG as KASAN detected. At the end of nilfs_segctor_thread(), it assigns NULL to "sc_task" member of "struct nilfs_sc_info" to indicate the thread has finished, and then notifies nilfs_segctor_kill_thread() of this using waitqueue "sc_wait_task" on the struct nilfs_sc_info. However, here, immediately after the NULL assignment to "sc_task", it is possible that nilfs_segctor_kill_thread() will detect it and return to continue the deallocation, freeing the nilfs_sc_info structure before the thread does the notification. This fixes the issue by protecting the NULL assignment to "sc_task" and its notification, with spinlock "sc_state_lock" of the struct nilfs_sc_info. Since nilfs_segctor_kill_thread() does a final check to see if "sc_task" is NULL with "sc_state_lock" locked, this can eliminate the race.
CVE-2023-53606 1 Linux 1 Linux Kernel 2026-01-05 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: nfsd: clean up potential nfsd_file refcount leaks in COPY codepath There are two different flavors of the nfsd4_copy struct. One is embedded in the compound and is used directly in synchronous copies. The other is dynamically allocated, refcounted and tracked in the client struture. For the embedded one, the cleanup just involves releasing any nfsd_files held on its behalf. For the async one, the cleanup is a bit more involved, and we need to dequeue it from lists, unhash it, etc. There is at least one potential refcount leak in this code now. If the kthread_create call fails, then both the src and dst nfsd_files in the original nfsd4_copy object are leaked. The cleanup in this codepath is also sort of weird. In the async copy case, we'll have up to four nfsd_file references (src and dst for both flavors of copy structure). They are both put at the end of nfsd4_do_async_copy, even though the ones held on behalf of the embedded one outlive that structure. Change it so that we always clean up the nfsd_file refs held by the embedded copy structure before nfsd4_copy returns. Rework cleanup_async_copy to handle both inter and intra copies. Eliminate nfsd4_cleanup_intra_ssc since it now becomes a no-op.