| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| Archer 6.11.00204.10014 allows attackers to execute arbitrary code via crafted system inputs that would be exported into the CSV and be executed after the user opened the file with compatible applications. NOTE: the Supplier does not accept this as a valid vulnerability report against their product. |
| zlib versions up to and including 1.3.1.2 contain a global buffer overflow in the untgz utility. The TGZfname() function copies an attacker-supplied archive name from argv[] into a fixed-size 1024-byte static global buffer using an unbounded strcpy() call without length validation. Supplying an archive name longer than 1024 bytes results in an out-of-bounds write that can lead to memory corruption, denial of service, and potentially code execution depending on compiler, build flags, architecture, and memory layout. The overflow occurs prior to any archive parsing or validation. |
| In the Linux kernel, the following vulnerability has been resolved:
ext4: fix out-of-bound read in ext4_xattr_inode_dec_ref_all()
There's issue as follows:
BUG: KASAN: use-after-free in ext4_xattr_inode_dec_ref_all+0x6ff/0x790
Read of size 4 at addr ffff88807b003000 by task syz-executor.0/15172
CPU: 3 PID: 15172 Comm: syz-executor.0
Call Trace:
__dump_stack lib/dump_stack.c:82 [inline]
dump_stack+0xbe/0xfd lib/dump_stack.c:123
print_address_description.constprop.0+0x1e/0x280 mm/kasan/report.c:400
__kasan_report.cold+0x6c/0x84 mm/kasan/report.c:560
kasan_report+0x3a/0x50 mm/kasan/report.c:585
ext4_xattr_inode_dec_ref_all+0x6ff/0x790 fs/ext4/xattr.c:1137
ext4_xattr_delete_inode+0x4c7/0xda0 fs/ext4/xattr.c:2896
ext4_evict_inode+0xb3b/0x1670 fs/ext4/inode.c:323
evict+0x39f/0x880 fs/inode.c:622
iput_final fs/inode.c:1746 [inline]
iput fs/inode.c:1772 [inline]
iput+0x525/0x6c0 fs/inode.c:1758
ext4_orphan_cleanup fs/ext4/super.c:3298 [inline]
ext4_fill_super+0x8c57/0xba40 fs/ext4/super.c:5300
mount_bdev+0x355/0x410 fs/super.c:1446
legacy_get_tree+0xfe/0x220 fs/fs_context.c:611
vfs_get_tree+0x8d/0x2f0 fs/super.c:1576
do_new_mount fs/namespace.c:2983 [inline]
path_mount+0x119a/0x1ad0 fs/namespace.c:3316
do_mount+0xfc/0x110 fs/namespace.c:3329
__do_sys_mount fs/namespace.c:3540 [inline]
__se_sys_mount+0x219/0x2e0 fs/namespace.c:3514
do_syscall_64+0x33/0x40 arch/x86/entry/common.c:46
entry_SYSCALL_64_after_hwframe+0x67/0xd1
Memory state around the buggy address:
ffff88807b002f00: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
ffff88807b002f80: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
>ffff88807b003000: ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
^
ffff88807b003080: ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
ffff88807b003100: ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
Above issue happens as ext4_xattr_delete_inode() isn't check xattr
is valid if xattr is in inode.
To solve above issue call xattr_check_inode() check if xattr if valid
in inode. In fact, we can directly verify in ext4_iget_extra_inode(),
so that there is no divergent verification. |
| In the Linux kernel, the following vulnerability has been resolved:
net: dsa: sja1105: fix kasan out-of-bounds warning in sja1105_table_delete_entry()
There are actually 2 problems:
- deleting the last element doesn't require the memmove of elements
[i + 1, end) over it. Actually, element i+1 is out of bounds.
- The memmove itself should move size - i - 1 elements, because the last
element is out of bounds.
The out-of-bounds element still remains out of bounds after being
accessed, so the problem is only that we touch it, not that it becomes
in active use. But I suppose it can lead to issues if the out-of-bounds
element is part of an unmapped page. |
| In the Linux kernel, the following vulnerability has been resolved:
ksmbd: fix out-of-bounds in parse_sec_desc()
If osidoffset, gsidoffset and dacloffset could be greater than smb_ntsd
struct size. If it is smaller, It could cause slab-out-of-bounds.
And when validating sid, It need to check it included subauth array size. |
| In the Linux kernel, the following vulnerability has been resolved:
xfrm: state: fix out-of-bounds read during lookup
lookup and resize can run in parallel.
The xfrm_state_hash_generation seqlock ensures a retry, but the hash
functions can observe a hmask value that is too large for the new hlist
array.
rehash does:
rcu_assign_pointer(net->xfrm.state_bydst, ndst) [..]
net->xfrm.state_hmask = nhashmask;
While state lookup does:
h = xfrm_dst_hash(net, daddr, saddr, tmpl->reqid, encap_family);
hlist_for_each_entry_rcu(x, net->xfrm.state_bydst + h, bydst) {
This is only safe in case the update to state_bydst is larger than
net->xfrm.xfrm_state_hmask (or if the lookup function gets
serialized via state spinlock again).
Fix this by prefetching state_hmask and the associated pointers.
The xfrm_state_hash_generation seqlock retry will ensure that the pointer
and the hmask will be consistent.
The existing helpers, like xfrm_dst_hash(), are now unsafe for RCU side,
add lockdep assertions to document that they are only safe for insert
side.
xfrm_state_lookup_byaddr() uses the spinlock rather than RCU.
AFAICS this is an oversight from back when state lookup was converted to
RCU, this lock should be replaced with RCU in a future patch. |
| CryptoLib provides a software-only solution using the CCSDS Space Data Link Security Protocol - Extended Procedures (SDLS-EP) to secure communications between a spacecraft running the core Flight System (cFS) and a ground station. Prior to 1.4.2, there is a missing bounds check in Crypto_Key_update() (crypto_key_mgmt.c) which allows a remote attacker to trigger a stack-based buffer overflow by supplying a TLV packet with a spoofed length field. The function calculates the number of keys from an attacker-controlled field (pdu_len), which may exceed the static array size (kblk[98]), leading to an out-of-bounds write and potential memory corruption. This vulnerability is fixed in 1.4.2. |
| iccDEV provides a set of libraries and tools that allow for the interaction, manipulation, and application of ICC color management profiles. Prior to version 2.3.1.2, iccDEV is vulnerable to heap buffer overflow in the ToneMap parser. This issue has been patched in version 2.3.1.2. |
| An issue was discovered in matio 1.5.28. A heap-based memory corruption can occur in Mat_VarCreateStruct() when the nfields value does not match the actual number of strings in the fields array. This leads to out-of-bounds reads and invalid memory frees during cleanup, potentially causing a segmentation fault or heap corruption. |
| A missing length check in `ogs_pfcp_dev_add` function from PFCP library, used by both smf and upf in open5gs 2.7.2 and earlier, allows a local attacker to cause a Buffer Overflow by changing the `session.dev` field with a value with length greater than 32. |
| In the Linux kernel, the following vulnerability has been resolved:
ALSA: usb-audio: Validate UAC3 cluster segment descriptors
UAC3 class segment descriptors need to be verified whether their sizes
match with the declared lengths and whether they fit with the
allocated buffer sizes, too. Otherwise malicious firmware may lead to
the unexpected OOB accesses. |
| An improper neutralization of formula elements in a CSV File [CWE-1236] vulnerability in Fortinet FortiAIOps 2.0.0 may allow a remote authenticated attacker to execute arbitrary commands on a client's workstation via poisoned CSV reports. |
| In the Linux kernel, the following vulnerability has been resolved:
hfsplus: fix slab-out-of-bounds in hfsplus_bnode_read()
The hfsplus_bnode_read() method can trigger the issue:
[ 174.852007][ T9784] ==================================================================
[ 174.852709][ T9784] BUG: KASAN: slab-out-of-bounds in hfsplus_bnode_read+0x2f4/0x360
[ 174.853412][ T9784] Read of size 8 at addr ffff88810b5fc6c0 by task repro/9784
[ 174.854059][ T9784]
[ 174.854272][ T9784] CPU: 1 UID: 0 PID: 9784 Comm: repro Not tainted 6.16.0-rc3 #7 PREEMPT(full)
[ 174.854281][ T9784] Hardware name: QEMU Ubuntu 24.04 PC (i440FX + PIIX, 1996), BIOS 1.16.3-debian-1.16.3-2 04/01/2014
[ 174.854286][ T9784] Call Trace:
[ 174.854289][ T9784] <TASK>
[ 174.854292][ T9784] dump_stack_lvl+0x10e/0x1f0
[ 174.854305][ T9784] print_report+0xd0/0x660
[ 174.854315][ T9784] ? __virt_addr_valid+0x81/0x610
[ 174.854323][ T9784] ? __phys_addr+0xe8/0x180
[ 174.854330][ T9784] ? hfsplus_bnode_read+0x2f4/0x360
[ 174.854337][ T9784] kasan_report+0xc6/0x100
[ 174.854346][ T9784] ? hfsplus_bnode_read+0x2f4/0x360
[ 174.854354][ T9784] hfsplus_bnode_read+0x2f4/0x360
[ 174.854362][ T9784] hfsplus_bnode_dump+0x2ec/0x380
[ 174.854370][ T9784] ? __pfx_hfsplus_bnode_dump+0x10/0x10
[ 174.854377][ T9784] ? hfsplus_bnode_write_u16+0x83/0xb0
[ 174.854385][ T9784] ? srcu_gp_start+0xd0/0x310
[ 174.854393][ T9784] ? __mark_inode_dirty+0x29e/0xe40
[ 174.854402][ T9784] hfsplus_brec_remove+0x3d2/0x4e0
[ 174.854411][ T9784] __hfsplus_delete_attr+0x290/0x3a0
[ 174.854419][ T9784] ? __pfx_hfs_find_1st_rec_by_cnid+0x10/0x10
[ 174.854427][ T9784] ? __pfx___hfsplus_delete_attr+0x10/0x10
[ 174.854436][ T9784] ? __asan_memset+0x23/0x50
[ 174.854450][ T9784] hfsplus_delete_all_attrs+0x262/0x320
[ 174.854459][ T9784] ? __pfx_hfsplus_delete_all_attrs+0x10/0x10
[ 174.854469][ T9784] ? rcu_is_watching+0x12/0xc0
[ 174.854476][ T9784] ? __mark_inode_dirty+0x29e/0xe40
[ 174.854483][ T9784] hfsplus_delete_cat+0x845/0xde0
[ 174.854493][ T9784] ? __pfx_hfsplus_delete_cat+0x10/0x10
[ 174.854507][ T9784] hfsplus_unlink+0x1ca/0x7c0
[ 174.854516][ T9784] ? __pfx_hfsplus_unlink+0x10/0x10
[ 174.854525][ T9784] ? down_write+0x148/0x200
[ 174.854532][ T9784] ? __pfx_down_write+0x10/0x10
[ 174.854540][ T9784] vfs_unlink+0x2fe/0x9b0
[ 174.854549][ T9784] do_unlinkat+0x490/0x670
[ 174.854557][ T9784] ? __pfx_do_unlinkat+0x10/0x10
[ 174.854565][ T9784] ? __might_fault+0xbc/0x130
[ 174.854576][ T9784] ? getname_flags.part.0+0x1c5/0x550
[ 174.854584][ T9784] __x64_sys_unlink+0xc5/0x110
[ 174.854592][ T9784] do_syscall_64+0xc9/0x480
[ 174.854600][ T9784] entry_SYSCALL_64_after_hwframe+0x77/0x7f
[ 174.854608][ T9784] RIP: 0033:0x7f6fdf4c3167
[ 174.854614][ T9784] Code: f0 ff ff 73 01 c3 48 8b 0d 26 0d 0e 00 f7 d8 64 89 01 48 83 c8 ff c3 66 2e 0f 1f 84 00 00 00 00 08
[ 174.854622][ T9784] RSP: 002b:00007ffcb948bca8 EFLAGS: 00000206 ORIG_RAX: 0000000000000057
[ 174.854630][ T9784] RAX: ffffffffffffffda RBX: 0000000000000000 RCX: 00007f6fdf4c3167
[ 174.854636][ T9784] RDX: 00007ffcb948bcc0 RSI: 00007ffcb948bcc0 RDI: 00007ffcb948bd50
[ 174.854641][ T9784] RBP: 00007ffcb948cd90 R08: 0000000000000001 R09: 00007ffcb948bb40
[ 174.854645][ T9784] R10: 00007f6fdf564fc0 R11: 0000000000000206 R12: 0000561e1bc9c2d0
[ 174.854650][ T9784] R13: 0000000000000000 R14: 0000000000000000 R15: 0000000000000000
[ 174.854658][ T9784] </TASK>
[ 174.854661][ T9784]
[ 174.879281][ T9784] Allocated by task 9784:
[ 174.879664][ T9784] kasan_save_stack+0x20/0x40
[ 174.880082][ T9784] kasan_save_track+0x14/0x30
[ 174.880500][ T9784] __kasan_kmalloc+0xaa/0xb0
[ 174.880908][ T9784] __kmalloc_noprof+0x205/0x550
[ 174.881337][ T9784] __hfs_bnode_create+0x107/0x890
[ 174.881779][ T9784] hfsplus_bnode_find+0x2d0/0xd10
[ 174.882222][ T9784] hfsplus_brec_find+0x2b0/0x520
[ 174.882659][ T9784] hfsplus_delete_all_attrs+0x23b/0x3
---truncated--- |
| An issue was discovered in Samsung Mobile Processor Exynos 1380, 1480, 2400, and 1580. Incorrect Handling of the NL80211 vendor command leads to a buffer overflow during handling of an IOCTL message. |
| An issue was discovered in the WiFi driver in Samsung Mobile Processor Exynos 1380, 1480, 2400, 1580. Mishandling of an NL80211 vendor command leads to a buffer overflow. |
| Out-of-bounds Read vulnerability in Mitsubishi Electric GENESIS64 versions 10.97 to 10.97.1, Mitsubishi Electric Iconics Digital Solutions GENESIS64 versions 10.97 to 10.97.1, Mitsubishi Electric ICONICS Suite versions 10.97 to 10.97.1, Mitsubishi Electric Iconics Digital Solutions ICONICS Suite versions 10.97 to 10.97.1, Mitsubishi Electric GENESIS32 versions 9.7 and prior, Mitsubishi Electric Iconics Digital Solutions GENESIS32 versions 9.7 and prior, and Mitsubishi Electric MC Works64 versions 4.04E and prior allows a remote unauthenticated attacker to disclose information on memory or cause a Denial of Service (DoS) condition by sending specially crafted packets to the GENESIS64, ICONICS Suite, GENESIS32, or MC Works64 server. |
| A LoadLibraryEX vulnerability in Trend Micro Apex Central could allow an unauthenticated remote attacker to load an attacker-controlled DLL into a key executable, leading to execution of attacker-supplied code under the context of SYSTEM on affected installations. |
| An information disclosure vulnerability exists in multiple WSO2 products due to improper implementation of the enrich mediator. Authenticated users may be able to view unintended business data from other mediation contexts because the internal state is not properly isolated or cleared between executions.
This vulnerability does not impact user credentials or access tokens but may lead to leakage of sensitive business information handled during message flows. |
| A weakness has been identified in Shiguangwu sgwbox N3 2.0.25. Affected by this vulnerability is an unknown functionality of the file /usr/sbin/http_eshell_server of the component WIREDCFGGET Interface. Executing manipulation of the argument params can lead to buffer overflow. The attack may be launched remotely. The exploit has been made available to the public and could be exploited. The vendor was contacted early about this disclosure but did not respond in any way. |
| A Buffer overflow vulnerability on Fanvil x210 2.12.20 devices allows attackers to cause a denial of service or potentially execute arbitrary commands via crafted POST request to the /cgi-bin/webconfig?page=upload&action=submit endpoint. |